Home
Class 6
MATHS
Find dy/dx if siny=x^3...

Find `dy/dx if siny=x^3`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the equation \(\sin y = x^3\), we will use implicit differentiation. Here are the steps: ### Step-by-Step Solution: 1. **Start with the given equation**: \[ \sin y = x^3 \] 2. **Differentiate both sides with respect to \(x\)**: - The left side involves \(y\), which is a function of \(x\), so we use the chain rule: \[ \frac{d}{dx}(\sin y) = \cos y \cdot \frac{dy}{dx} \] - The right side is a simple power function: \[ \frac{d}{dx}(x^3) = 3x^2 \] 3. **Set the derivatives equal to each other**: \[ \cos y \cdot \frac{dy}{dx} = 3x^2 \] 4. **Solve for \(\frac{dy}{dx}\)**: - To isolate \(\frac{dy}{dx}\), divide both sides by \(\cos y\): \[ \frac{dy}{dx} = \frac{3x^2}{\cos y} \] 5. **Use the identity for secant**: - Recall that \(\sec y = \frac{1}{\cos y}\), so we can rewrite the equation: \[ \frac{dy}{dx} = 3x^2 \sec y \] ### Final Answer: \[ \frac{dy}{dx} = 3x^2 \sec y \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find dy/dx if siny=3x

Find dy/dx if siny=x^4

Find dy/dx if x=siny

Find dy/dx if sinx=x^3-y

Find dy/dx if 2x=siny

Find dy/dx if siny-x=7

Find dy/dx if y^4=x+x^3

Find dy/dx if x-y=siny

Find dy/dx if x^2=siny

Find dy/dx if y-x=siny