Home
Class 6
MATHS
Find dy/dx if sinx=cosy...

Find `dy/dx if sinx=cosy`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given that \(\sin x = \cos y\), we will use implicit differentiation. Here’s a step-by-step solution: ### Step 1: Start with the given equation We have: \[ \sin x = \cos y \] ### Step 2: Differentiate both sides with respect to \(x\) Using implicit differentiation, we differentiate both sides: \[ \frac{d}{dx}(\sin x) = \frac{d}{dx}(\cos y) \] ### Step 3: Apply the differentiation rules The derivative of \(\sin x\) with respect to \(x\) is \(\cos x\). For the right side, we apply the chain rule. The derivative of \(\cos y\) with respect to \(x\) is: \[ -\sin y \cdot \frac{dy}{dx} \] So, we have: \[ \cos x = -\sin y \cdot \frac{dy}{dx} \] ### Step 4: Solve for \(\frac{dy}{dx}\) Now, we need to isolate \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = -\frac{\cos x}{\sin y} \] ### Step 5: Simplify the expression Using the identity \(\sin y = \cos(\frac{\pi}{2} - y)\), we can express \(\frac{dy}{dx}\) as: \[ \frac{dy}{dx} = -\frac{\cos x}{\sin y} \] This is our final expression for \(\frac{dy}{dx}\). ### Final Answer \[ \frac{dy}{dx} = -\frac{\cos x}{\sin y} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find dy/dx if x-siny=cosy

Find dy/dx if y= sinx^cosx .

Find dy/dx if y= sinx/cosx

Find dy/dx if y= sinx.cosx

Find dy/dx if 2x+sinx=y

Find dy/dx if sinx=x^3-y

Find dy/dx if x^2=cosy

Find dy/dx if x=y sinx

Find dy/dx if y^2=sinx

Find dy/dx if x= cosy