Home
Class 6
MATHS
Find dy/dx if y=x^88...

Find `dy/dx if y=x^88`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \frac{dy}{dx} \) when \( y = x^{88} \), we will use the power rule of differentiation. Here are the steps: ### Step 1: Identify the function We have the function: \[ y = x^{88} \] ### Step 2: Apply the power rule The power rule states that if \( y = x^n \), then: \[ \frac{dy}{dx} = n \cdot x^{n-1} \] In our case, \( n = 88 \). ### Step 3: Differentiate the function Using the power rule: \[ \frac{dy}{dx} = 88 \cdot x^{88 - 1} \] \[ \frac{dy}{dx} = 88 \cdot x^{87} \] ### Step 4: Write the final answer Thus, the derivative of \( y = x^{88} \) is: \[ \frac{dy}{dx} = 88x^{87} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find dy/dx if y=x^x

Find dy/dx if y=7x^7

Find dy/dx if y^3=x

Find dy/dx if y^7=x

Find dy/dx if y=x^4+x

Find dy/dx if y = x^x

Find dy/dx if x=e^y

Find dy/dx if x=y^2

Find dy/dx if y= x.e^x

Find dy/dx if y=sin4x