Home
Class 6
MATHS
Find dy/dx if y=8sin2x...

Find `dy/dx if y=8sin2x`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \frac{dy}{dx} \) for the function \( y = 8 \sin(2x) \), we will use the chain rule of differentiation. Here are the steps to solve the problem: ### Step-by-Step Solution: 1. **Identify the function**: We have \( y = 8 \sin(2x) \). 2. **Apply the constant multiple rule**: Since 8 is a constant, we can factor it out when differentiating. Thus, we can express the derivative as: \[ \frac{dy}{dx} = 8 \cdot \frac{d}{dx}(\sin(2x)) \] 3. **Differentiate the sine function**: The derivative of \( \sin(\theta) \) with respect to \( \theta \) is \( \cos(\theta) \). Here, \( \theta = 2x \). Therefore: \[ \frac{d}{dx}(\sin(2x)) = \cos(2x) \cdot \frac{d}{dx}(2x) \] 4. **Differentiate the angle**: The derivative of \( 2x \) with respect to \( x \) is 2. Thus, we have: \[ \frac{d}{dx}(\sin(2x)) = \cos(2x) \cdot 2 \] 5. **Combine the results**: Now substituting back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = 8 \cdot (2 \cos(2x)) = 16 \cos(2x) \] 6. **Final result**: Therefore, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = 16 \cos(2x) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find dy/dx if y=sin^2x

Find dy/dx if y= sin^2x

Find dy/dx if y=sin4x

Find dy/dx if y=sin4x

Find dy/dx if y= sin2x.e^x

Find dy/dx if y= sin2x - x^3

Find dy/dx if y= sin^4x

Find dy/dx if x=sin^2y

Find dy/dx if x=sin2y

Find dy/dx if y=8x^7