Home
Class 9
MATHS
a^(1/n)=...

`a^(1/n)`=

A

`root(n)(a)`

B

a/n

C

na

D

n+a

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • QUADRILATERALS

    VGS PUBLICATION-BRILLIANT|Exercise EXERCISE|81 Videos
  • STATISTICS

    VGS PUBLICATION-BRILLIANT|Exercise EXERCISE|92 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(n to oo)[(1+(1)/(n))(1+2/n)* * * (1+(n)/(n))]^(1/n)

If A=[(1,1,1),(1,1,1),(1,1,1)] , prove that A^(n)=[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))],n in N .

Evaluate the following define integrals as limit of sums : lim_(n rarroo) [(1+1/n) (1+2/n)......(1+n/n)]^(1//n)

Lt_(ntooo){(1)/(n)+(1)/(n+1)+(1)/(n+2)+.......+(1)/(3n)}=

Lt_(ntooo){(1)/(n)+(1)/(n+1)+(1)/(n+2)+.......+(1)/(4n)}=

If f(n)= 1/n {(n+1)(n+2)....2n}^(1//n) then {:(" "Lt),(n rarr oo):} f(n)=