Home
Class 9
MATHS
Assertion (A) : If alpha , beta, gamma...

Assertion (A) : If ` alpha , beta, gamma ` are the roots of ` x^3 -x-1=0` then ` alpha^3 + beta^3 + gamma^3 =1`
Reason (R ): If a +b+c=0 then ` a^3 + b^3 +c^3 = 3abc`

A

0

B

3abc

C

3(a + b+ c)

D

3(a+b)(b+c)(c+a)

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • GEOMETRICAL CONSTRUCTIONS

    VGS PUBLICATION-BRILLIANT|Exercise EXERCISE|36 Videos
  • PROBABILITY

    VGS PUBLICATION-BRILLIANT|Exercise EXERCISE|76 Videos

Similar Questions

Explore conceptually related problems

If alpha , beta , gamma are the roots of 2x^3 -2x -1=0 the sum ( alpha beta)^2 =

If alpha, beta, gamma are the roots of x^(3) + 3x + 3 = 0 , then alpha^(5) + beta^(5) + gamma^(5) =

If alpha , beta , gamma are the roots of x^3 +2x^2 -3x -1=0 then alpha^(-2) + beta^(-2) + gamma^(-2)=

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^3

If alpha, beta ,gamma are the roots of x^(3) + x^(2) + x + 1 = 0 then alpha^(3) + beta^(3) + gamma^(3) =

If alpha,beta,gamma are the roots of x^(3)+ px^(2)+qx + r=0, then alpha^(3) + beta^(3) + gamma^(3)=

If alpha, beta, gamma are roots of x^(3) - 5x + 4 = 0 then (alpha^(3) + beta^(3) + gamma^(3))^(2) =

If alpha, beta, gamma are the roots of x^(3) - px^(2) + qx - r = 0 then alpha^(3) + beta^(3) + gamma^(3) =

If alpha, beta, gamma are the roots of x^(3) - 3x + 7 = 0 then alpha + beta + gamma =