Home
Class 11
MATHS
In DeltaABC, given /A=45^(@), /B=105^(@)...

In `DeltaABC`, given `/_A=45^(@)`, `/_B=105^(@)`, `c=sqrt(2)`, then

A

`b=sqrt(3)`, `/_C=30^(@)`

B

`b=sqrt(3)+1`, `/_C=30^(@)`

C

`b=sqrt(2)`, `/_C=30^(@)`

D

`b=sqrt(3)-1`, `/_C=30^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the remaining angle and the lengths of the sides of triangle ABC, given that angle A = 45°, angle B = 105°, and side c = √2. ### Step 1: Find Angle C We know that the sum of the angles in a triangle is 180°. \[ \text{Angle C} = 180° - \text{Angle A} - \text{Angle B} \] Substituting the known values: \[ \text{Angle C} = 180° - 45° - 105° = 30° \] ### Step 2: Use the Sine Rule to Find Side A The Sine Rule states that: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \] We can use this to find side a. Rearranging the formula gives: \[ a = \frac{c \cdot \sin A}{\sin C} \] Substituting the known values (c = √2, A = 45°, C = 30°): \[ a = \frac{\sqrt{2} \cdot \sin(45°)}{\sin(30°)} \] Using the known values of sine: \[ \sin(45°) = \frac{1}{\sqrt{2}}, \quad \sin(30°) = \frac{1}{2} \] Substituting these values: \[ a = \frac{\sqrt{2} \cdot \frac{1}{\sqrt{2}}}{\frac{1}{2}} = \frac{1}{\frac{1}{2}} = 2 \] ### Step 3: Use the Sine Rule to Find Side B Now we can find side b using the Sine Rule again: \[ b = \frac{c \cdot \sin B}{\sin C} \] Substituting the known values (c = √2, B = 105°, C = 30°): \[ b = \frac{\sqrt{2} \cdot \sin(105°)}{\sin(30°)} \] We need to find \(\sin(105°)\). Using the sine addition formula: \[ \sin(105°) = \sin(45° + 60°) = \sin(45°)\cos(60°) + \cos(45°)\sin(60° \] \[ = \frac{1}{\sqrt{2}} \cdot \frac{1}{2} + \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} = \frac{1 + \sqrt{3}}{2\sqrt{2}} \] Now substituting back into the equation for b: \[ b = \frac{\sqrt{2} \cdot \frac{1 + \sqrt{3}}{2\sqrt{2}}}{\frac{1}{2}} = \frac{1 + \sqrt{3}}{2} \cdot 2 = 1 + \sqrt{3} \] ### Final Results - Angle C = 30° - Side A = 2 - Side B = 1 + √3
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-2

    ICSE|Exercise Section-B|10 Videos
  • MODEL TEST PAPER-2

    ICSE|Exercise Section-C|10 Videos
  • MODEL TEST PAPER-19

    ICSE|Exercise SECTION - C |10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

In a DeltaABC , if A=30^(@) , C=105^(@) and b=3sqrt(2) , then a =

In a DeltaABC , if A=45^(@) and B=75^(@) , then a+sqrt(2)c=

If in a Delta ABC, /_A=45^@,/_B=75^@, then

In a DeltaABC , if a = 5, B=45^(@) and c=2sqrt(2) , then b=

In a DeltaABC , if /_A=72^(@) and /_B=65^(@) , find the measure of /_C .

In a DeltaABC , if A=45^(@) , b=sqrt(6) , a=2, then B=

If a DeltaABC, b=2, C=60^(@), c=sqrt(6) , then a =

In a DeltaABC , if c = 2, A=120^(@), a=sqrt(6) , then C=

In in triangleABC, angleC=105^(@), angleB=45^(@) and a=2 cm, then find the value of b.

In a DeltaABC , if b=sqrt(3)+1, c=sqrt(3)-1 and A=60^(@) , then the value of tan.(B-C)/(2) is