Home
Class 11
MATHS
lim(n to oo)(n!)/((n+1)!-n!)...

`lim_(n to oo)(n!)/((n+1)!-n!)`

A

`0`

B

`2`

C

`-1`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \frac{n!}{(n+1)! - n!} \), we can follow these steps: ### Step 1: Rewrite the factorials We know that \( (n+1)! = (n+1) \cdot n! \). Thus, we can rewrite the expression in the limit: \[ (n+1)! - n! = (n+1) \cdot n! - n! = n! \cdot (n + 1 - 1) = n! \cdot n \] ### Step 2: Substitute back into the limit Now, substituting this back into the limit gives us: \[ \lim_{n \to \infty} \frac{n!}{(n+1)! - n!} = \lim_{n \to \infty} \frac{n!}{n! \cdot n} \] ### Step 3: Simplify the expression We can simplify the expression by canceling \( n! \) in the numerator and the denominator: \[ \lim_{n \to \infty} \frac{1}{n} \] ### Step 4: Evaluate the limit Now we can evaluate the limit as \( n \) approaches infinity: \[ \lim_{n \to \infty} \frac{1}{n} = 0 \] ### Final Answer Thus, the final answer is: \[ \lim_{n \to \infty} \frac{n!}{(n+1)! - n!} = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-2

    ICSE|Exercise Section-B|10 Videos
  • MODEL TEST PAPER-2

    ICSE|Exercise Section-C|10 Videos
  • MODEL TEST PAPER-19

    ICSE|Exercise SECTION - C |10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

(lim)_(n->oo)(n !)/((n+1)!+n !) is equal to a. 1 b . 0 c. 2 d. 1/2

The value of lim_(n to oo)((n!)/(n^(n)))^((2n^(4)+1)/(5n^(5)+1)) is equal

Evaluate the following limit: lim_(nto oo)[(n!)/(n^(n))]^(1//n)

The value of lim_(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+...+(n)/(n^(2)+(n-1)^(2))] is :

lim_(n to oo) {(1)/(n)+(1)/(n+1)+(1)/(n+2)+...+(1)/(3n)}=

Evaluate lim_(nto oo)((n+2)!+(n+1)!)/((n+2)!-(n+1)!)

lim_(n to oo)(1)/(n)(1+sqrt((n)/(n+1))+sqrt((n)/(n+2))+....+sqrt((n)/(4n-3))) is equal to:

lim_(n to oo)(1)/(n)[tan.(pi)/(4n)+tan.(2pi)/(4n)+…..+tan.(n pi)/(4n)]

Evaluate: ("lim")_(n rarr oo)[(n !)/(n^n)]^(1//n)

lim_(n to oo ) {(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+ (n)/(n^(2)+n^(2))} is equal to