Home
Class 11
MATHS
i^(57)+1/(i^(125)), is equal to...

`i^(57)+1/(i^(125))`, is equal to

A

A. `2i`

B

B. `-2i`

C

C. `0`

D

D. `2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( i^{57} + \frac{1}{i^{125}} \), we can follow these steps: ### Step 1: Simplify \( i^{57} \) We know that the powers of \( i \) (the imaginary unit) repeat every 4: - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) To simplify \( i^{57} \), we can find the remainder when 57 is divided by 4: \[ 57 \div 4 = 14 \quad \text{(remainder 1)} \] Thus, \( i^{57} = i^{4 \cdot 14 + 1} = (i^4)^{14} \cdot i^1 = 1^{14} \cdot i = i \). ### Step 2: Simplify \( \frac{1}{i^{125}} \) Now, we simplify \( i^{125} \) in a similar way: \[ 125 \div 4 = 31 \quad \text{(remainder 1)} \] Thus, \( i^{125} = i^{4 \cdot 31 + 1} = (i^4)^{31} \cdot i^1 = 1^{31} \cdot i = i \). So, \( \frac{1}{i^{125}} = \frac{1}{i} \). ### Step 3: Rationalize \( \frac{1}{i} \) To rationalize \( \frac{1}{i} \), we multiply the numerator and denominator by \( -i \): \[ \frac{1}{i} \cdot \frac{-i}{-i} = \frac{-i}{-i^2} = \frac{-i}{1} = -i \] ### Step 4: Combine the results Now we can combine the results from Step 1 and Step 3: \[ i + \frac{1}{i^{125}} = i - i = 0 \] ### Final Answer Thus, the expression \( i^{57} + \frac{1}{i^{125}} \) simplifies to: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -3

    ICSE|Exercise SECTION -B|10 Videos
  • MODEL TEST PAPER -3

    ICSE|Exercise SECTION C|18 Videos
  • MODEL TEST PAPER -2

    ICSE|Exercise Section C |8 Videos
  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -C|10 Videos

Similar Questions

Explore conceptually related problems

[i^(17)+1/(i^(315))]^(9) is equal to

(1+2i)/(1+3i) is equal to

((1+i)/(1-i))^(2) + ((1-i)/(1+i))^(2) is equal to :

sum_(i=1)^(oo)sum_(j=1)^(oo)sum_(k=1)^(oo)(1)/(a^(i+j+k)) is equal to (where |a| gt 1 )

(1+i)^(4)+(1-i)^( 4) is equal to

If n is an odd integer, then (1 + i)^(6n) + (1-i)^(6n) is equal to

5.The value of (i^(4x+1)-i^(4x-1))/(2) is equal to (a) 1 (b) -1 (c) -i (d) 0

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to

If i=sqrt(-1) , then (i^(n)+i^(-n), n in Z) is equal to

If i=sqrt(-1) , then (i^(n)+i^(-n), n in Z) is equal to