Home
Class 11
MATHS
The argument of the complex number ((3+i...

The argument of the complex number `((3+i)/(2-i)+(3-i)/(2+i))` is equal to

A

A. `(pi)/2`

B

B. `(pi)/4`

C

C. `0`

D

D. `-(pi)/4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the argument of the complex number \(\frac{3+i}{2-i} + \frac{3-i}{2+i}\), we will simplify the expression step by step. ### Step 1: Simplify Each Fraction We start with the expression: \[ \frac{3+i}{2-i} + \frac{3-i}{2+i} \] To simplify each fraction, we will multiply the numerator and the denominator by the conjugate of the denominator. **For the first fraction:** \[ \frac{3+i}{2-i} \cdot \frac{2+i}{2+i} = \frac{(3+i)(2+i)}{(2-i)(2+i)} \] Calculating the denominator: \[ (2-i)(2+i) = 2^2 - i^2 = 4 - (-1) = 4 + 1 = 5 \] Calculating the numerator: \[ (3+i)(2+i) = 6 + 3i + 2i + i^2 = 6 + 5i - 1 = 5 + 5i \] Thus, the first fraction simplifies to: \[ \frac{5 + 5i}{5} = 1 + i \] **For the second fraction:** \[ \frac{3-i}{2+i} \cdot \frac{2-i}{2-i} = \frac{(3-i)(2-i)}{(2+i)(2-i)} \] Calculating the denominator (which is the same as before): \[ (2+i)(2-i) = 5 \] Calculating the numerator: \[ (3-i)(2-i) = 6 - 3i - 2i + i^2 = 6 - 5i - 1 = 5 - 5i \] Thus, the second fraction simplifies to: \[ \frac{5 - 5i}{5} = 1 - i \] ### Step 2: Combine the Simplified Fractions Now we combine both simplified fractions: \[ (1 + i) + (1 - i) = 1 + i + 1 - i = 2 \] ### Step 3: Find the Argument The result is a real number \(2\). The argument of a complex number \(z = x + yi\) is given by: \[ \text{arg}(z) = \tan^{-1}\left(\frac{y}{x}\right) \] In our case: - Real part \(x = 2\) - Imaginary part \(y = 0\) Thus, the argument is: \[ \text{arg}(2) = \tan^{-1}\left(\frac{0}{2}\right) = \tan^{-1}(0) = 0 \] ### Final Answer The argument of the complex number \(\frac{3+i}{2-i} + \frac{3-i}{2+i}\) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -3

    ICSE|Exercise SECTION -B|10 Videos
  • MODEL TEST PAPER -3

    ICSE|Exercise SECTION C|18 Videos
  • MODEL TEST PAPER -2

    ICSE|Exercise Section C |8 Videos
  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -C|10 Videos

Similar Questions

Explore conceptually related problems

The argument of the complex number (1 +i)^(4) is

((1+i)^(3))/(2+i) is equal to

(1+2i)/(1+3i) is equal to

The argument of the complex number (i/2-2/i) is equal to (a) pi/2 (b) pi/4 (c) pi/12 (d) (3pi)/4

Prove that the complex number ((3+2i)/(2-3i)) + ((3-2i)/(2+ 3i)) is purely real.

Find the modulus and argument of the complex number (2 + i)/(4i + (1+ i)^(2))

Find the modulus and argument of the complex numbers : (i) (1+i)/(1-i) (ii) 1/(1+i)

Show that the complex number ((4+3i)/(3 + 4i)) ((4 -3i)/(3-4i)) is purely real.

Find the modulus and argument of the complex number (1+2i)/(1-3i) .

Find the modulus and argument of the complex number (2+i)/(4i+(1+i)^(2))