Home
Class 11
MATHS
lim(ktooo)(1^(3)+2^(3)+……….+k^(3))/(k^(4...

`lim_(ktooo)(1^(3)+2^(3)+……….+k^(3))/(k^(4))` is equal to

A

A. 0

B

B. 2

C

C. `1/3`

D

D. `1/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{k \to \infty} \frac{1^3 + 2^3 + \ldots + k^3}{k^4}, \] we can follow these steps: ### Step 1: Use the formula for the sum of cubes The sum of the first \( k \) cubes is given by the formula: \[ 1^3 + 2^3 + \ldots + k^3 = \left( \frac{k(k + 1)}{2} \right)^2. \] ### Step 2: Substitute the sum into the limit Substituting this formula into our limit, we have: \[ \lim_{k \to \infty} \frac{\left( \frac{k(k + 1)}{2} \right)^2}{k^4}. \] ### Step 3: Simplify the expression Now we simplify the expression: \[ = \lim_{k \to \infty} \frac{k^2(k + 1)^2}{4k^4}. \] ### Step 4: Factor out \( k^4 \) We can factor out \( k^4 \) from the denominator: \[ = \lim_{k \to \infty} \frac{(k^2)(k^2 + 2k + 1)}{4k^4} = \lim_{k \to \infty} \frac{(k^2 + 2k + 1)}{4k^2}. \] ### Step 5: Divide by \( k^2 \) Now we divide each term in the numerator by \( k^2 \): \[ = \lim_{k \to \infty} \frac{1 + \frac{2}{k} + \frac{1}{k^2}}{4}. \] ### Step 6: Evaluate the limit As \( k \) approaches infinity, \( \frac{2}{k} \) and \( \frac{1}{k^2} \) approach 0: \[ = \frac{1 + 0 + 0}{4} = \frac{1}{4}. \] Thus, the final answer is: \[ \lim_{k \to \infty} \frac{1^3 + 2^3 + \ldots + k^3}{k^4} = \frac{1}{4}. \] ### Conclusion The limit evaluates to \( \frac{1}{4} \).
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -3

    ICSE|Exercise SECTION -B|10 Videos
  • MODEL TEST PAPER -3

    ICSE|Exercise SECTION C|18 Videos
  • MODEL TEST PAPER -2

    ICSE|Exercise Section C |8 Videos
  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -C|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xtooo) ((x^(3))/(3x^(2)-4)-(x^(2))/(3x+2))" is equal to "

Match the following : {:("Column I ", " Column II" ), ("(A)" if lim_(x to 1) (1-x) tan""(pix)/2 = k " then " sin (1/k) " is" , "(p)"4),( "(B)" if lim_(x to 5) (x^(k)-5^(k))/(x-5) = 500 " then k is " , "(q)" 1),("(C)" lim_(x to oo)(1 + 4/(x+1))^((3x-1)/3) " is equal to " e^(k) " , then k is" , "(r) A perfect sqare"), ("(D) " d^(20)/(dx^(20)) (2 cos x"," cos 3x)= 2^(4k) [ cos2x + 2^(20) . cos4k]" then k is " , "(s)" 5),(, "(t)An odd number"):}

If a,b in R^(+) then find Lim_(nrarroo) sum_(k=1)^(n) ( n)/((k+an)(k+bn)) is equal to

If Lim_(x to 1) (x^(4)-1)/(x-1)=Lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , find the value of k .

If the sum of the first 15 terms of the series ((3)/(4))^(3)+(1(1)/(2))^(3)+(2(1)/(4))^(3)+3^(3)+(3(3)/(4))^(3)+... is equal to 225k, then k is equal to

If lim_(x to 2) (x - 2)/(""^(3)sqrt(x) - ""^(3)sqrt(2)) = lim_(x to k) (x^(2) - k^(2))/(x - k) find the value of K

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

The value of the expression Sigma_(k=0)^(27)k.^(27)C_(k)((1)/(3))^(k)((2)/(3))^(27-k) is equal to

lim_(x to 2) (x^(3) + x^(2) + 4x + 12)/(x^(3) - 3x + 2) is equal to

If lim_(x to 1) (x^(3) - 1)/(x - 1) = lim_(x to k) (x^(4) - k^(4))/(x^(3) - k^(3)) , find the value of k.