Home
Class 11
MATHS
Solve 3 cos 2 theta-sin theta=2...

Solve `3 cos 2 theta-sin theta=2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3 \cos 2\theta - \sin \theta = 2\), we will follow these steps: ### Step 1: Rewrite \(\cos 2\theta\) We know that \(\cos 2\theta\) can be expressed in terms of \(\sin \theta\): \[ \cos 2\theta = 1 - 2\sin^2 \theta \] Substituting this into the equation gives: \[ 3(1 - 2\sin^2 \theta) - \sin \theta = 2 \] ### Step 2: Simplify the equation Now, expand and simplify the equation: \[ 3 - 6\sin^2 \theta - \sin \theta = 2 \] Rearranging this, we get: \[ -6\sin^2 \theta - \sin \theta + 3 - 2 = 0 \] This simplifies to: \[ -6\sin^2 \theta - \sin \theta + 1 = 0 \] Multiplying through by -1 to make the leading coefficient positive: \[ 6\sin^2 \theta + \sin \theta - 1 = 0 \] ### Step 3: Factor the quadratic equation Now we need to factor the quadratic equation: \[ 6\sin^2 \theta + 3\sin \theta - 2\sin \theta - 1 = 0 \] Grouping the terms: \[ (6\sin^2 \theta + 3\sin \theta) + (-2\sin \theta - 1) = 0 \] Factoring gives: \[ 3\sin \theta(2\sin \theta + 1) - 1(2\sin \theta + 1) = 0 \] This can be factored as: \[ (3\sin \theta - 1)(2\sin \theta + 1) = 0 \] ### Step 4: Solve for \(\sin \theta\) Setting each factor to zero gives us two equations: 1. \(3\sin \theta - 1 = 0\) 2. \(2\sin \theta + 1 = 0\) From the first equation: \[ 3\sin \theta = 1 \implies \sin \theta = \frac{1}{3} \] From the second equation: \[ 2\sin \theta = -1 \implies \sin \theta = -\frac{1}{2} \] ### Step 5: Find the general solutions For \(\sin \theta = \frac{1}{3}\): \[ \theta = \sin^{-1}\left(\frac{1}{3}\right) + 2n\pi \quad \text{or} \quad \theta = \pi - \sin^{-1}\left(\frac{1}{3}\right) + 2n\pi \] For \(\sin \theta = -\frac{1}{2}\): \[ \theta = \frac{7\pi}{6} + 2n\pi \quad \text{or} \quad \theta = \frac{11\pi}{6} + 2n\pi \] ### Final Solution Combining both sets of solutions, we have: \[ \theta = n\pi + (-1)^n \sin^{-1}\left(\frac{1}{3}\right) \quad \text{and} \quad \theta = \frac{7\pi}{6} + 2n\pi \quad \text{or} \quad \theta = \frac{11\pi}{6} + 2n\pi \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -3

    ICSE|Exercise SECTION -B|10 Videos
  • MODEL TEST PAPER -3

    ICSE|Exercise SECTION C|18 Videos
  • MODEL TEST PAPER -2

    ICSE|Exercise Section C |8 Videos
  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -C|10 Videos

Similar Questions

Explore conceptually related problems

Solve cos 4 theta+ sin 5 theta=2 .

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

Solve 7cos^2theta+3sin^2theta=4

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

Solve 2 cos^(2) theta +3 sin theta=0 .

Solve sin 3 theta-sin theta=4 cos^(2) theta-2 .

Solve : cos p theta = sin q theta.

Solve: 7cos^2theta+3sin^2theta=4

Solve (3 sin theta-sin 3 theta)/(sin theta)+(cos 3 theta)/(cos theta)=1 .

Solve 2 cos^(2) theta = 3 sin theta