Home
Class 11
MATHS
If 18x=pi, then prove that tan 2x.tan3x....

If `18x=pi`, then prove that `tan 2x.tan3x.tan4x.tan8x=1`

Text Solution

Verified by Experts

The correct Answer is:
125
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -3

    ICSE|Exercise SECTION -B|10 Videos
  • MODEL TEST PAPER -3

    ICSE|Exercise SECTION C|18 Videos
  • MODEL TEST PAPER -2

    ICSE|Exercise Section C |8 Videos
  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -C|10 Videos

Similar Questions

Explore conceptually related problems

tan 5x tan3x tan2x=

If t a n x+tan(x+pi/3)+tan(x+(2pi)/3)=3, then prove that (3tanx-t a n^3x)/(1-3t a n^2x)=1 .

Solve (tan3x-tan2x)/(1+tan3xtan2x )=1

Solve (tan 3x - tan 2x)/(1+tan 3x tan 2x)=1 .

The number of solution of the equation tan3x-tan2x-tan3x.tan2x = 1 in [0, 2pi] is

If tan^(-1) x+tan^(-1)y+tan^(-1)z=pi/2 then prove that yz+zx+xy=1

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

If tan^(-1).(a+x)/(a) + tan ^(-1) ((a-x)/(a)) = (pi)/(6) then prove that x^(2) = 2sqrt(3)a^(2)

Solve the trigonometric equation : tan x + tan 2x + tan 3x = tan x tan 2x tan 3x