Home
Class 11
MATHS
Find Re ((z(1)z(2))/(z(1))), give z(1)=2...

Find Re `((z_(1)z_(2))/(z_(1))),` give `z_(1)=2-i` and `z_(2)=-2+i`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the real part of \(\frac{z_1 z_2}{z_1}\) given \(z_1 = 2 - i\) and \(z_2 = -2 + i\), we will follow these steps: ### Step 1: Calculate \(z_1 z_2\) Given: - \(z_1 = 2 - i\) - \(z_2 = -2 + i\) We will multiply \(z_1\) and \(z_2\): \[ z_1 z_2 = (2 - i)(-2 + i) \] Using the distributive property (FOIL method): \[ = 2 \cdot (-2) + 2 \cdot i - i \cdot (-2) - i \cdot i \] \[ = -4 + 2i + 2i - i^2 \] \[ = -4 + 4i - (-1) \quad (\text{since } i^2 = -1) \] \[ = -4 + 4i + 1 \] \[ = -3 + 4i \] ### Step 2: Divide \(z_1 z_2\) by \(z_1\) Now we need to compute: \[ \frac{z_1 z_2}{z_1} = \frac{-3 + 4i}{2 - i} \] ### Step 3: Rationalize the denominator To simplify this expression, we multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{-3 + 4i}{2 - i} \cdot \frac{2 + i}{2 + i} \] Calculating the denominator: \[ (2 - i)(2 + i) = 2^2 - i^2 = 4 - (-1) = 4 + 1 = 5 \] Calculating the numerator: \[ (-3 + 4i)(2 + i) = -3 \cdot 2 - 3 \cdot i + 4i \cdot 2 + 4i \cdot i \] \[ = -6 - 3i + 8i + 4i^2 \] \[ = -6 + 5i + 4(-1) \quad (\text{since } i^2 = -1) \] \[ = -6 + 5i - 4 \] \[ = -10 + 5i \] Thus, we have: \[ \frac{-3 + 4i}{2 - i} = \frac{-10 + 5i}{5} = -2 + i \] ### Step 4: Find the real part The real part of \(-2 + i\) is: \[ \text{Re}\left(-2 + i\right) = -2 \] ### Final Answer The real part of \(\frac{z_1 z_2}{z_1}\) is \(-2\). ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -3

    ICSE|Exercise SECTION -B|10 Videos
  • MODEL TEST PAPER -3

    ICSE|Exercise SECTION C|18 Videos
  • MODEL TEST PAPER -2

    ICSE|Exercise Section C |8 Videos
  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -C|10 Videos

Similar Questions

Explore conceptually related problems

Let z_(1)=2 -I, z_(2)= -2 +i , find (i) Re ((z_(1)z_(2))/(bar(z)_(1))) , (ii) Im ((1)/(z_(1)bar(z)_(2)))

If z_(1)=2-i, z_(2)=1+ 2i, then find the value of the following : (i) Re((z_(1)*z_(2))/(bar(z)_(2))) (ii) Im (z_(1)*bar(z)_(2))

Let z_1=2-i ,z_2=-2+i . Find (i) Re ((z_1z_2)/( bar z_1)) (ii) Im (1/(z_1 bar z_1))

Let z_1=2-i ,""""z_2=-2+i . Find (i) Re ((z_1z_2)/( bar z_1)) (ii) Im (1/(z_1 bar z_1))

If Z_(1)=2 + 3i and z_(2) = -1 + 2i then find (i) z_(1) +z_(2) (ii) z_(1) -z_(2) (iii) z_(1).z_(2) (iv) z_(1)/z_(2)

If z_(1) , z_(2) are complex numbers such that Re(z_(1))=|z_(1)-2| , Re(z_(2))=|z_(2)-2| and arg(z_(1)-z_(2))=pi//3 , then Im(z_(1)+z_(2))=

Find the greatest and least value of |z_(1)+z_(2)|=" if " z_(1)=24 + 7i and |z_(2)|=7

Find the gratest and the least values of |z_(1)+z_(2)|, if z_(1)=24+7iand |z_(2)|=6," where "i=sqrt(-1)

Let |(z_(1) - 2z_(2))//(2-z_(1)z_(2))|= 1 and |z_(2)| ne 1 , where z_(1) and z_(2) are complex numbers. shown that |z_(1)| = 2

If A(z_(1)) , B(z_(2)) , C(z_(3)) are vertices of a triangle such that z_(3)=(z_(2)-iz_(1))/(1-i) and |z_(1)|=3 , |z_(2)|=4 and |z_(2)+iz_(1)|=|z_(1)|+|z_(2)| , then area of triangle ABC is