Home
Class 11
MATHS
If in a triangle ABC, cos A +cos B+cos C...

If in a triangle ABC, `cos A +cos B+cos C=3/2`, prove that the triangle is equilateral.

Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -3

    ICSE|Exercise SECTION -B|10 Videos
  • MODEL TEST PAPER -3

    ICSE|Exercise SECTION C|18 Videos
  • MODEL TEST PAPER -2

    ICSE|Exercise Section C |8 Videos
  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -C|10 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC, a (b cos C - c cos B) =

If in a Delta ABC , cot A + cot B + cot C = sqrt(3) . Prove that triangle is equilateral

In a triangle ABC sin (A/2) sin (B/2) sin (C/2) = 1/8 prove that the triangle is equilateral

In a triangle A B C , if cos A+2\ cos B+cos C=2. prove that the sides of the triangle are in A.P.

If in a Delta A B C ,cos^2A+cos^2B+cos^2C=1, prove that the triangle is right angled.

In a triangle ABC, cos 3A + cos 3B + cos 3C = 1 , then find any one angle.

In a Delta ABC , cos (A + B) + cos C =

In a triangle ABC, sin A- cos B = Cos C , then angle B is

In as triangle ABC prove that: cos (A+B)+cosC=0

In triangle ABC, if cos A + cos B + cos C = (7)/(4), " then " (R)/(r) is equal to