Home
Class 11
MATHS
If (cosA)/(1-sinA)=tan(k+A/2), then k=...

If `(cosA)/(1-sinA)=tan(k+A/2),` then k=

A

`(pi)/2`

B

`-(pi)/4`

C

`(pi)/4`

D

`-(pi)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{\cos A}{1 - \sin A} = \tan\left(k + \frac{A}{2}\right)\), we will follow these steps: ### Step 1: Rewrite the Left-Hand Side (LHS) We start with the LHS: \[ \frac{\cos A}{1 - \sin A} \] Using the identities for cosine and sine in terms of tangent, we can express \(\cos A\) and \(\sin A\) as: \[ \cos A = \frac{1 - \tan^2\left(\frac{A}{2}\right)}{1 + \tan^2\left(\frac{A}{2}\right)} \] \[ \sin A = \frac{2\tan\left(\frac{A}{2}\right)}{1 + \tan^2\left(\frac{A}{2}\right)} \] Substituting these into the LHS gives: \[ \frac{\frac{1 - \tan^2\left(\frac{A}{2}\right)}{1 + \tan^2\left(\frac{A}{2}\right)}}{1 - \frac{2\tan\left(\frac{A}{2}\right)}{1 + \tan^2\left(\frac{A}{2}\right)}} \] ### Step 2: Simplify the Denominator The denominator can be simplified: \[ 1 - \frac{2\tan\left(\frac{A}{2}\right)}{1 + \tan^2\left(\frac{A}{2}\right)} = \frac{(1 + \tan^2\left(\frac{A}{2}\right)) - 2\tan\left(\frac{A}{2}\right)}{1 + \tan^2\left(\frac{A}{2}\right)} = \frac{(1 - \tan\left(\frac{A}{2}\right)^2)}{1 + \tan^2\left(\frac{A}{2}\right)} \] ### Step 3: Combine the Fractions Now we can combine the fractions: \[ \frac{1 - \tan^2\left(\frac{A}{2}\right)}{1 + \tan^2\left(\frac{A}{2}\right)} \cdot \frac{1 + \tan^2\left(\frac{A}{2}\right)}{1 - \tan^2\left(\frac{A}{2}\right)} = \frac{(1 - \tan^2\left(\frac{A}{2}\right))^2}{(1 + \tan^2\left(\frac{A}{2}\right))(1 - \tan^2\left(\frac{A}{2}\right))} \] ### Step 4: Use the Tangent Addition Formula This can be expressed in the form of a tangent function: \[ \frac{1 + \tan\left(\frac{A}{2}\right)}{1 - \tan\left(\frac{A}{2}\right)} = \tan\left(\frac{\pi}{4} + \frac{A}{2}\right) \] ### Step 5: Set the LHS Equal to the RHS Now we have: \[ \tan\left(\frac{\pi}{4} + \frac{A}{2}\right) = \tan\left(k + \frac{A}{2}\right) \] ### Step 6: Compare Angles Since the tangents are equal, we can set the angles equal to each other: \[ k + \frac{A}{2} = \frac{\pi}{4} + \frac{A}{2} \] ### Step 7: Solve for \(k\) Subtract \(\frac{A}{2}\) from both sides: \[ k = \frac{\pi}{4} \] ### Final Answer Thus, the value of \(k\) is: \[ \boxed{\frac{\pi}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -B|10 Videos
  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER -3

    ICSE|Exercise Section B |7 Videos
  • MODEL TEST PAPER -5

    ICSE|Exercise SECTION -C|10 Videos

Similar Questions

Explore conceptually related problems

Prove that: (1+sinA-cosA)/(1+sinA+cosA)=tan(A/2)

Prove that: (1+sinA-cosA)/(1+sinA+cosA) = tan(A/2)

If (2sinA)/(1+sinA+cosA)=k then (1+sinA-cosA)/(1+sinA)=

Prove the following identities: (cosA)/(1-sinA)+(sinA)/(1-cosA)+1 = (sinAcosA)/((1-sinA)(1-cosA) ((1+cotA+tanA)(sinA-cosA)/(sec^3A-cos e c^3A)=sin^2Acos^2A

(1-cosA)/(sinA) is equal to ?

If tan3A=(3 tan A+k tan^(3)A)/(1-3 tan^(2)A) , then k is equal to

Prove that (1+sin2A)/(cos2A)=(cosA+sinA)/(cosA-sinA)=tan((pi)/(4)+A)

If (tan3A)/(tanA)=k(k!=1) then which of the following is not true? (a) (cosA)/(cos3A)=(k-1)/2 (b) (sin3A)/(sinA)=(2k)/(k-1) (c) (cot3A)/(cotA)=1/k (d) none of these

Prove that: cotA/2-tanA/2=(cosA/2)/(sinA/2)-(sinA/2)/(cosA/2) =(cos^(2)A/2-sin^(2)A/2)/(sinA/2cosA/2) =cosA/(1/2.(2sinA/2cosA/2)) =(2cosA)/(sinA)=2cotA = RHS. Hence Proved.

Prove that : (i) (1-cosA)/(sinA)=(sinA)/(1+cosA) (ii) (costheta)/(1-sintheta)=(1+sintheta)/(costheta)