Home
Class 11
MATHS
If f(x)=mx+c and f(0)=1=f'(0) then f(-2)...

If `f(x)=mx+c` and `f(0)=1=f'(0)` then `f(-2)=` (i) 1 (ii) `-1` (iii) 3 (iv) `+-1`

A

1

B

`-1`

C

3

D

`+-1`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -B|10 Videos
  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER -3

    ICSE|Exercise Section B |7 Videos
  • MODEL TEST PAPER -5

    ICSE|Exercise SECTION -C|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=mx+c , f(0)=f'^ (0)=1 then f(2)=

If f(x)=int(3x^4-1)/(x^4+x+1)^2dx and f(0)=0 , then f(-1)= …

(d)/(dx) (AC)= f(x) (MC-AC) , then f(x)= (i) (1)/(x) (ii) x (iii) x^(-2) (iv) -x^(-1)

If f(x)=x^(2) and g(x)=2x , then evaluate, (i) (f+g)(3)" "(ii) (f-g)(2) (iii) (f*g)(1)" "(iv) ((f)/(g))(5)

Let f(x)={:{(x+2",",xle-1),(cx^(2)",",xgt-1):} If Lt_(xto-1) f(x) exists, then c is (i) -1 (ii) 1 (iii) 2 (iv) -2

If f(x)="cos"^(2)x+"sec"^(2)x , then (i) f(x)lt1 (ii) f(x)=1 (iii) 2ltf(x)lt1 (iv) f(x)ge2

Suppose |[f'(x),f(x)],[f''(x),f'(x)]|=0 is continuously differentiable function with f^(prime)(x)!=0 and satisfies f(0)=1 and f'(0)=2 then (lim)_(x->0)(f(x)-1)/x is 1//2 b. 1 c. 2 d. 0

If f(x)=2x-5 , then evaluate the following: (i) f(0) (ii) f(7) (iii) f(-3)

If f= {(1, 2), (2, -3), (3, -1)} then find: (i) 2f, (ii) 2+f , (iii) f^(2) , (iv) sqrt(f)

If f'(x)=(1)/((1+x^(2))^(3//2)) and f(0)=0, then f(1) is equal to :