Home
Class 11
MATHS
If cot alpha=1/2, alpha in (pi,(3pi)/2) ...

If `cot alpha=1/2, alpha in (pi,(3pi)/2)` and `sec beta=(-5)/3, beta in ((pi)/2, pi)` find `tan (alpha+beta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( \tan(\alpha + \beta) \) given that \( \cot \alpha = \frac{1}{2} \) and \( \sec \beta = -\frac{5}{3} \). ### Step 1: Find \( \tan \alpha \) Given \( \cot \alpha = \frac{1}{2} \), we know that: \[ \tan \alpha = \frac{1}{\cot \alpha} = \frac{1}{\frac{1}{2}} = 2 \] Since \( \alpha \) is in the range \( (\pi, \frac{3\pi}{2}) \), \( \tan \alpha \) is positive. **Hint:** Remember that \( \tan \) is the reciprocal of \( \cot \). ### Step 2: Find \( \tan \beta \) Given \( \sec \beta = -\frac{5}{3} \), we can find \( \cos \beta \): \[ \cos \beta = \frac{1}{\sec \beta} = -\frac{3}{5} \] Using the Pythagorean identity \( \sin^2 \beta + \cos^2 \beta = 1 \): \[ \sin^2 \beta + \left(-\frac{3}{5}\right)^2 = 1 \] \[ \sin^2 \beta + \frac{9}{25} = 1 \] \[ \sin^2 \beta = 1 - \frac{9}{25} = \frac{16}{25} \] Thus, \[ \sin \beta = -\frac{4}{5} \quad (\text{since } \beta \text{ is in } \left(\frac{\pi}{2}, \pi\right), \sin \beta \text{ is negative}) \] Now, we can find \( \tan \beta \): \[ \tan \beta = \frac{\sin \beta}{\cos \beta} = \frac{-\frac{4}{5}}{-\frac{3}{5}} = \frac{4}{3} \] **Hint:** Use the Pythagorean identity to find \( \sin \beta \) after determining \( \cos \beta \). ### Step 3: Calculate \( \tan(\alpha + \beta) \) Using the formula for \( \tan(\alpha + \beta) \): \[ \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \] Substituting the values: \[ \tan(\alpha + \beta) = \frac{2 + \frac{4}{3}}{1 - 2 \cdot \frac{4}{3}} \] Calculating the numerator: \[ 2 + \frac{4}{3} = \frac{6}{3} + \frac{4}{3} = \frac{10}{3} \] Calculating the denominator: \[ 1 - 2 \cdot \frac{4}{3} = 1 - \frac{8}{3} = \frac{3}{3} - \frac{8}{3} = -\frac{5}{3} \] Now substituting back: \[ \tan(\alpha + \beta) = \frac{\frac{10}{3}}{-\frac{5}{3}} = -2 \] ### Final Result Thus, the value of \( \tan(\alpha + \beta) \) is: \[ \boxed{-2} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -B|10 Videos
  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER -3

    ICSE|Exercise Section B |7 Videos
  • MODEL TEST PAPER -5

    ICSE|Exercise SECTION -C|10 Videos

Similar Questions

Explore conceptually related problems

If cotalpha=1/2 , secbeta=-5/3 ,where piltalphalt(3pi)/2 and pi/2 ltbetaltpi .find the value of alpha + beta terminates

If (sqrt(2)cos alpha)/sqrt(1-cos2 alpha)=1/7 and sqrt((1+cos 2 beta)/2)=1/sqrt10,alpha,beta in (pi/2,pi) , then tan (2 alpha - beta) is equal to ........

If sin (alpha + beta) = 4/5 , cos (alpha - beta) = (12)/(13) 0 lt alpha lt (pi)/(4), 0 lt beta lt (pi)/(4), find tan 2 alpha .

If 2 sin 2alpha= | tan beta+ cot beta |alpha,beta, in((pi)/(2),pi) , then the value of alpha+beta is

If sqrt2(sin alpha)/(sqrt(1+cos2 alpha))=1/7 and sqrt((1-cos2beta)/2)=1/(sqrt(10)) alpha, beta in (0, pi/2) then tan (alpha + 2 beta) is equal to _________

If alpha=tan^(-1)(t a n(5pi)/4)a n dbeta=tan^(-1)(-tan(2pi)/3),t h e n 4alpha=3beta (b) 3alpha=4beta (c) alpha-beta=74alpha=(3beta)/(12) none of these

If alpha=tan^(-1)(t a n(5pi)/4)a n dbeta=tan^(-1)(-tan((2pi)/3)),t h e n (a) 4alpha=3beta (b) 3alpha=4beta (c) alpha-beta=74alpha=(3beta)/(12) (d) none of these

Let (sqrt(2)sin alpha)/sqrt(1+cos 2alpha)=1/7 and sqrt((1-cos2 beta)/2)=1/sqrt(10) where alpha,beta in (0,pi/2) . Then tan(alpha+2beta) is equal to

If alpha+beta=pi/4 then (1+tan alpha)(1+tan beta)=

Let cos (alpha+beta) = 4/5 and sin(alpha-beta)=5/13 where 0<= alpha,beta<= pi/4 then find tan (2alpha)