Home
Class 11
MATHS
Prove that "cos"(pi)/9."cos"(2pi)/9."cos...

Prove that `"cos"(pi)/9."cos"(2pi)/9."cos"(3pi)/9."cos"(4pi)/9=1/(2^(4))`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -B|10 Videos
  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER -3

    ICSE|Exercise Section B |7 Videos
  • MODEL TEST PAPER -5

    ICSE|Exercise SECTION -C|10 Videos

Similar Questions

Explore conceptually related problems

Prove that: cos(pi/5)cos((2pi)/5)cos((4pi)/5)cos((8pi)/5)=(-1)/16

Prove that : cos(pi/7)cos((2pi)/7) cos((3pi)/7)=1/8

Prove that: cos(pi/7)cos((2pi)/7)cos((4pi)/7)=-1/8

Prove that: cos(pi/7)cos(2pi/7)cos(4pi/7)=-1/8,

Prove that: 8cos^3pi/9-\ 6cospi/9=1.

Prove that cos(2pi)/(15)cos(4pi)/(15)cos(8pi)/(15)cos(14pi)/(15)=1/(16)

Prove that 4cos((2pi)/7).cos(pi/7)-1=2cos((2pi)/7) .

Prove that: cos((3pi)/2+x)cos(2pi+x){cot((3pi)/2-x)+"cot"(2pi+x)}=1

Prove that 4cos(2pi)/7dotcospi/7-1=2cos(2pi)/7dot

Prove that: cos^4pi/8+cos^4(3pi)/8+cos^4(5pi)/8+cos^4(7pi)/8=3/2