Home
Class 11
MATHS
Prove that cos^(3)x+cos^(3)((2pi)/3+x)+c...

Prove that `cos^(3)x+cos^(3)((2pi)/3+x)+cos^(3)((2pi)/3-x)=3/4 cos 3x`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -B|10 Videos
  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER -3

    ICSE|Exercise Section B |7 Videos
  • MODEL TEST PAPER -5

    ICSE|Exercise SECTION -C|10 Videos

Similar Questions

Explore conceptually related problems

Prove that : cos^(2)x+cos^(2)(x+(pi)/(3))+cos^(2)(x-(pi)/(3))=(3)/(2)

Prove that: cos^2A+cos^2(A+(2pi)/3)+cos^2(A-(2pi)/3)=3/2

Prove that : cos^(2)A+cos^(2)(A+pi/3)+cos^(2)(A-pi/3) = 3/2

Prove that cos^2x+cos^2(x+pi/3)+cos^2(x-pi/3)=3/2 .

Prove : cos3x=4cos^(3)x-3cosx

Prove that: cos^2A+cos^2(A+pi/3)+cos^2(A-pi/3)=3/2

Prove that cos ^(3) (x-(2pi)/(3)) + cos ^(3) x + cos ^(3) (x + (2pi)/(3)) = (3)/(4) cos 3x.

Prove that : cos^2 theta+ cos^2 ((2pi)/3 -theta) + cos^2 ((2pi)/3 +theta) = 3/2

Prove that: cos((3pi)/2+x)cos(2pi+x)[cot((3pi)/2-x)+cot(2pi+x)]=1

Prove that: cos((3pi)/4+x)-cos((3pi)/4-x)=-sqrt(2)sinx