Home
Class 11
MATHS
Using Mathematical induction prove that ...

Using Mathematical induction prove that
`3.2^(2)+3^(2).2^(3)+3^(3).2^(4)+…………+3^(n).2^(n+1)=12/6(6^(n)-1)`, for all `n in N`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -B|10 Videos
  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER -3

    ICSE|Exercise Section B |7 Videos
  • MODEL TEST PAPER -5

    ICSE|Exercise SECTION -C|10 Videos

Similar Questions

Explore conceptually related problems

Using the principle of mathematical induction, prove that 1.3 + 2.3^(2) + 3.3^(2) + ... + n.3^(n) = ((2n-1)(3)^(n+1)+3)/(4) for all n in N .

Using principle of mathematical induction, prove that 1 + 3 + 3^(2) + … 3^(n-1) = (3^(n) - 1)/(2)

Using the principle of mathematical induction prove that : 1. 3+2. 3^2+3. 3^3++n .3^n=((2n-1)3^(n+1)+3)/4^ for all n in N .

Using the principle of mathematical induction, prove that : 1. 2. 3+2. 3. 4++n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4^ for all n in N .

Using the principle of mathematical induction prove that 1/(1. 2. 3)+1/(2. 3. 4)+1/(3. 4. 5)++1/(n(n+1)(n+2))=(n(n+3))/(4(n+1)(n+2) for all n in N

Using the principle of mathematical induction prove that 1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)++1/(1+2+3++n)=(2n)/(n+1) for all n in N

Using the principle of mathematical induction prove that 1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)++1/(1+2+3++n)=(2n)/(n+1) for all n in N

Using mathematical induction prove that n^(3)-7n+3 is divisible by 3, AA n in N

Using mathematical induction, prove the following: 1+2+3+...+n< (2n+1)^2 AA n in N

Using the principle of mathematical induction, prove that 1/(1*2)+1/(2*3)+1/(3*4)+…+1/(n(n+1)) = n/((n+1)) .