Home
Class 11
MATHS
Construct the truth table for[(~p)^^q]im...

Construct the truth table for`[(~p)^^q]implies(pvvq)`

Text Solution

AI Generated Solution

The correct Answer is:
To construct the truth table for the expression \([(~p) \land q] \implies (p \lor q)\), we will follow these steps: ### Step 1: Identify the variables We have two variables: \(p\) and \(q\). Each variable can take values of either 0 (False) or 1 (True). ### Step 2: Create the truth table structure We will create a table with columns for \(p\), \(q\), \(\sim p\) (negation of \(p\)), \((\sim p) \land q\) (negation of \(p\) conjunction \(q\)), \(p \lor q\) (disjunction of \(p\) and \(q\)), and finally \([(~p) \land q] \implies (p \lor q)\). ### Step 3: Fill in the truth values We will evaluate the truth values for each column based on the values of \(p\) and \(q\). | \(p\) | \(q\) | \(\sim p\) | \((\sim p) \land q\) | \(p \lor q\) | \([(~p) \land q] \implies (p \lor q)\) | |-------|-------|-------------|-----------------------|---------------|-----------------------------------------| | 0 | 0 | 1 | 0 | 0 | 1 | | 0 | 1 | 1 | 1 | 1 | 1 | | 1 | 0 | 0 | 0 | 1 | 1 | | 1 | 1 | 0 | 0 | 1 | 1 | ### Step 4: Explanation of each column 1. **Negation of \(p\) (\(\sim p\))**: This is simply the opposite of \(p\). 2. **Conjunction \((\sim p) \land q\)**: This is true (1) only if both \(\sim p\) and \(q\) are true. 3. **Disjunction \(p \lor q\)**: This is true (1) if at least one of \(p\) or \(q\) is true. 4. **Implication \([(~p) \land q] \implies (p \lor q)\)**: This is false (0) only when the first part \((\sim p) \land q\) is true and the second part \(p \lor q\) is false. In all other cases, it is true (1). ### Final Truth Table The final truth table shows that the implication is always true for all combinations of \(p\) and \(q\).
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER -4

    ICSE|Exercise SECTION -C|10 Videos
  • MODEL TEST PAPER -3

    ICSE|Exercise Section B |7 Videos
  • MODEL TEST PAPER -5

    ICSE|Exercise SECTION -C|10 Videos

Similar Questions

Explore conceptually related problems

construct truth table for (~p)^^ q

construct truth table for (~p)^^ (~q)

construct truth table for ~(~p ^^ ~q)

construct truth table for ~(p ^^ q)

construct truth table for p vv(~q)

Construct truth table for ~ [ p vv(~ q)]

construct truth table for p ^^ (q vv r)

Construct the truth table (~p ∧ ~q)vv(p∧~q)

Construct the truth table for the statements ~ p vv q.

construct truth table for (p ^^q) v (~p ^^ q)