Home
Class 11
MATHS
Value of tan 75^(@) + cot 75^(@) = ?...

Value of tan `75^(@) + cot 75^(@) = ? `

A

`(1)/(4)`

B

`sqrt(3)`

C

4

D

`-4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan 75^\circ + \cot 75^\circ \), we will follow these steps: ### Step 1: Express \( \tan 75^\circ \) We can express \( \tan 75^\circ \) as: \[ \tan 75^\circ = \tan(45^\circ + 30^\circ) \] Using the formula for the tangent of a sum, we have: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \] Substituting \( a = 45^\circ \) and \( b = 30^\circ \): \[ \tan 75^\circ = \frac{\tan 45^\circ + \tan 30^\circ}{1 - \tan 45^\circ \tan 30^\circ} \] ### Step 2: Substitute known values We know that: \[ \tan 45^\circ = 1 \quad \text{and} \quad \tan 30^\circ = \frac{1}{\sqrt{3}} \] Substituting these values into the equation: \[ \tan 75^\circ = \frac{1 + \frac{1}{\sqrt{3}}}{1 - 1 \cdot \frac{1}{\sqrt{3}}} \] ### Step 3: Simplify the expression Now we simplify the numerator and denominator: \[ \tan 75^\circ = \frac{1 + \frac{1}{\sqrt{3}}}{1 - \frac{1}{\sqrt{3}}} \] To simplify, multiply the numerator and denominator by \( \sqrt{3} \): \[ \tan 75^\circ = \frac{\sqrt{3} + 1}{\sqrt{3} - 1} \] ### Step 4: Find \( \cot 75^\circ \) Since \( \cot 75^\circ = \frac{1}{\tan 75^\circ} \): \[ \cot 75^\circ = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \] ### Step 5: Add \( \tan 75^\circ \) and \( \cot 75^\circ \) Now we can find \( \tan 75^\circ + \cot 75^\circ \): \[ \tan 75^\circ + \cot 75^\circ = \frac{\sqrt{3} + 1}{\sqrt{3} - 1} + \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \] ### Step 6: Combine the fractions To combine the fractions, we find a common denominator: \[ \tan 75^\circ + \cot 75^\circ = \frac{(\sqrt{3} + 1)^2 + (\sqrt{3} - 1)^2}{(\sqrt{3} - 1)(\sqrt{3} + 1)} \] ### Step 7: Simplify the numerator and denominator Calculating the numerator: \[ (\sqrt{3} + 1)^2 = 3 + 2\sqrt{3} + 1 = 4 + 2\sqrt{3} \] \[ (\sqrt{3} - 1)^2 = 3 - 2\sqrt{3} + 1 = 4 - 2\sqrt{3} \] Adding these: \[ 4 + 2\sqrt{3} + 4 - 2\sqrt{3} = 8 \] Calculating the denominator: \[ (\sqrt{3} - 1)(\sqrt{3} + 1) = 3 - 1 = 2 \] ### Step 8: Final result Thus, we have: \[ \tan 75^\circ + \cot 75^\circ = \frac{8}{2} = 4 \] ### Final Answer The value of \( \tan 75^\circ + \cot 75^\circ \) is \( 4 \).
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -12

    ICSE|Exercise Section - B |10 Videos
  • MODEL TEST PAPER -12

    ICSE|Exercise Section - C |10 Videos
  • MODEL TEST PAPER -11

    ICSE|Exercise Sections - C|10 Videos
  • MODEL TEST PAPER -13

    ICSE|Exercise SECTION -C|10 Videos

Similar Questions

Explore conceptually related problems

The value of tan75^(@) =

Show that tan 75^(@) = (sqrt3) +(1 )/( sqrt3 -1) = 2 + sqrt3. Hence deduce that tan 75^(@) - cot 75^(@) = 4 sin 60^(@).

The value of tan75

Find the value of (tan 495^(@))/(cot 855^(@))

Find the value of (tan25^(@))/(cot65^(@)) .

The value of 2 sin 15^(@).cos75^(@)

Show that tan 75^0 + cot 75^0 = 4

Find the value of sin 75^(@) sin 15 ^(@).

Computer sin 75^(@) , cos 75^(@) and tan 15 ^(@), from the functions of 30^(@) and 45 ^(@)

The polar form of sin 75^(@)+i cos 75^(@) is