Home
Class 11
MATHS
If tan 69^(@) + tan 66^(@) - tan 69^(@)t...

If tan `69^(@) + tan 66^(@) - tan 69^(@)tan 66^(@) = 2k ` then k = (a)`-(1)/(2)` (b)`(1)/(2)` (c)`-1` (d)None of these

A

`-(1)/(2)`

B

`(1)/(2)`

C

`-1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given in the question: \[ \tan 69^\circ + \tan 66^\circ - \tan 69^\circ \tan 66^\circ = 2k \] ### Step 1: Use the angle addition formula for tangent We know that: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] In this case, we can set \(A = 69^\circ\) and \(B = 66^\circ\). Therefore, we can write: \[ \tan(69^\circ + 66^\circ) = \tan 135^\circ \] ### Step 2: Calculate \(\tan 135^\circ\) We know that: \[ \tan 135^\circ = -\tan 45^\circ = -1 \] ### Step 3: Substitute into the equation Now substituting this back into the equation we derived from the angle addition formula: \[ \tan 135^\circ = \frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} \] This gives us: \[ -1 = \frac{\tan 69^\circ + \tan 66^\circ}{1 - \tan 69^\circ \tan 66^\circ} \] ### Step 4: Cross-multiply to eliminate the fraction Cross-multiplying gives: \[ - (1 - \tan 69^\circ \tan 66^\circ) = \tan 69^\circ + \tan 66^\circ \] ### Step 5: Rearranging the equation This can be rearranged to: \[ -\tan 69^\circ - \tan 66^\circ = -1 + \tan 69^\circ \tan 66^\circ \] ### Step 6: Simplifying the equation This simplifies to: \[ \tan 69^\circ + \tan 66^\circ - \tan 69^\circ \tan 66^\circ = 1 \] ### Step 7: Relate to the original equation From the original equation, we have: \[ \tan 69^\circ + \tan 66^\circ - \tan 69^\circ \tan 66^\circ = 2k \] Thus, we can equate: \[ 2k = 1 \] ### Step 8: Solve for \(k\) Dividing both sides by 2 gives: \[ k = \frac{1}{2} \] ### Conclusion The value of \(k\) is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -12

    ICSE|Exercise Section - B |10 Videos
  • MODEL TEST PAPER -12

    ICSE|Exercise Section - C |10 Videos
  • MODEL TEST PAPER -11

    ICSE|Exercise Sections - C|10 Videos
  • MODEL TEST PAPER -13

    ICSE|Exercise SECTION -C|10 Videos

Similar Questions

Explore conceptually related problems

tan 6 ^(@) tan 42 ^(@) tan 66 ^(@) tan 78^(@) =1

Prove that :(tan69^@+tan 66^@)/(1-tan 69^@tan66^@)=-1

If (tan69^0+t a n 66^0) /(1-tan69^@tan66^@)=2k ,\ t h e n\ k= -1 b. 1//2 c. -1//2 d. 17

If A = tan 6^@ tan 42^@ and B = cot 66^@ cot 78^@, then

If tan 25^(@)=a , prove that (tan 155^(@)-tan115^(@))/(1+tan155^(@)tan115^(@))=(1-a^(2))/(2a) .

If tan^(-1) x + tan^(-1) y + tan ^(-1) z = (pi)/(2) , then value of xy + yz + zx a) -1 b) 1 c) 0 d) None of these

In Delta ABC if tan(A/2) tan(B/2) + tan(B/2) tan(C/2) = 2/3 then a+c

If tan3A=(3 tan A+k tan^(3)A)/(1-3 tan^(2)A) , then k is equal to

tan^(-1)(1/(11))+tan^(-1)(2/(11)) is equal to (a) 0 (b) 1//2 (c) -1 (d) none of these

If int (dx)/(5+4 cos x) = k tan^(-1) (m tan ((x)/(2))) + C then :