Home
Class 11
MATHS
lim(x to 0) (sin x^(@))/( x) is equal to...

`lim_(x to 0) (sin x^(@))/( x)` is equal to

A

1

B

`pi`

C

`-pi`

D

`(pi)/(180)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\sin x^{(\circ)}}{x} \), we need to convert the angle from degrees to radians first. ### Step-by-Step Solution: 1. **Convert Degrees to Radians**: We know that \( 1 \text{ degree} = \frac{\pi}{180} \text{ radians} \). Therefore, \( x^{(\circ)} = x \cdot \frac{\pi}{180} \). 2. **Substituting into the Limit**: Substitute \( x^{(\circ)} \) in the limit: \[ \lim_{x \to 0} \frac{\sin(x^{(\circ)})}{x} = \lim_{x \to 0} \frac{\sin\left(\frac{\pi x}{180}\right)}{x} \] 3. **Rewrite the Limit**: To apply the standard limit \( \lim_{u \to 0} \frac{\sin u}{u} = 1 \), we need to express the limit in a suitable form: \[ \lim_{x \to 0} \frac{\sin\left(\frac{\pi x}{180}\right)}{x} = \lim_{x \to 0} \frac{\sin\left(\frac{\pi x}{180}\right)}{\frac{\pi x}{180}} \cdot \frac{\frac{\pi x}{180}}{x} \] 4. **Simplifying the Expression**: The expression can be simplified: \[ = \lim_{x \to 0} \frac{\sin\left(\frac{\pi x}{180}\right)}{\frac{\pi x}{180}} \cdot \frac{\pi}{180} \] 5. **Evaluate the Limit**: As \( x \to 0 \), \( \frac{\sin\left(\frac{\pi x}{180}\right)}{\frac{\pi x}{180}} \) approaches 1. Therefore: \[ = 1 \cdot \frac{\pi}{180} = \frac{\pi}{180} \] ### Final Answer: Thus, the limit is: \[ \lim_{x \to 0} \frac{\sin x^{(\circ)}}{x} = \frac{\pi}{180} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -12

    ICSE|Exercise Section - B |10 Videos
  • MODEL TEST PAPER -12

    ICSE|Exercise Section - C |10 Videos
  • MODEL TEST PAPER -11

    ICSE|Exercise Sections - C|10 Videos
  • MODEL TEST PAPER -13

    ICSE|Exercise SECTION -C|10 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 0) (sin^(2) x//4)/(x) is equal to

lim_(x to 0) (sin 3x)/(x) is equal to

lim_(x to 0) (x)/(tan x) is equal to

lim _( x to 0) (e ^(sin (x ))-1)/(x ) equals to :

lim_(x -0) (1 - cos 4x)/(x^(2)) is equal to

lim_(xto0)(|sin x|)/x is equal to :

lim_(x->0) (sin x /x)

lim_(xto0) (sin(picos^(2)x))/(x^(2)) is equal to

lim_(x to 0) (K sin x)/(lx + mx cos x) is equal to

lim_(xrarr0)(sin5x)/(x) is equal to