Home
Class 11
MATHS
If a = b cos "" ( 2 pi)/ (3) = c cos ""...

If ` a = b cos "" ( 2 pi)/ (3) = c cos "" (4 pi)/( 3)`, then write the value of ab + bc + ca

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( a = b \cos\left(\frac{2\pi}{3}\right) \) 2. \( a = c \cos\left(\frac{4\pi}{3}\right) \) We can set all of these equal to a constant \( k \): \[ a = k, \quad b \cos\left(\frac{2\pi}{3}\right) = k, \quad c \cos\left(\frac{4\pi}{3}\right) = k \] From these equations, we can express \( b \) and \( c \) in terms of \( k \): \[ b = \frac{k}{\cos\left(\frac{2\pi}{3}\right)}, \quad c = \frac{k}{\cos\left(\frac{4\pi}{3}\right)} \] Next, we need to find the values of \( \cos\left(\frac{2\pi}{3}\right) \) and \( \cos\left(\frac{4\pi}{3}\right) \): - \( \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2} \) - \( \cos\left(\frac{4\pi}{3}\right) = -\frac{1}{2} \) Now substituting these values into the equations for \( b \) and \( c \): \[ b = \frac{k}{-\frac{1}{2}} = -2k, \quad c = \frac{k}{-\frac{1}{2}} = -2k \] Now we have: \[ a = k, \quad b = -2k, \quad c = -2k \] Next, we need to calculate \( ab + bc + ca \): \[ ab = k(-2k) = -2k^2 \] \[ bc = (-2k)(-2k) = 4k^2 \] \[ ca = (-2k)(k) = -2k^2 \] Now, adding these together: \[ ab + bc + ca = -2k^2 + 4k^2 - 2k^2 = 0 \] Thus, the value of \( ab + bc + ca \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -12

    ICSE|Exercise Section - B |10 Videos
  • MODEL TEST PAPER -12

    ICSE|Exercise Section - C |10 Videos
  • MODEL TEST PAPER -11

    ICSE|Exercise Sections - C|10 Videos
  • MODEL TEST PAPER -13

    ICSE|Exercise SECTION -C|10 Videos

Similar Questions

Explore conceptually related problems

If a=b cos((2pi)/3)= c cos((4pi)/3), then write the value of a b+b c+c a

If a=cos""(4pi)/(3)+isin""(4pi)/(3) , then the value of ((1+a)/(2))^(3n) is :

Let a, b,c are respectively the sines and p, q, r are respectively the consines of alpha, alpha+(2pi)/(3) and alpha+(4pi)/(3) , then : Q. The value of (ab+bc+ca) is :

If pi/2 < theta < (3pi)/2 then write the value of sqrt((1+cos2theta)/2)

When a=3 , b=0 , c=-2 , then find the value of : ab+2bc+3ca+4abc.

If cos A=4/(5), cosB=12/13 and (3pi)/2 < A, B < 2pi then find the value of cos(A+B)

The value of cos""(pi)/(9)cos""(2pi)/(9)cos""(3pi)/(9), is

If pi

If in a triangle ABC, 2 (cos A)/(a) + (cos B)/(b) +2 (cos C)/(c) = (a)/(bc) + b/(ca) then the value of the angle A is

Write the value of cos^(-1)(cos(5pi/4)) .