Home
Class 11
MATHS
Solve cos theta * cos 2 theta * cos 3 th...

Solve `cos theta * cos 2 theta * cos 3 theta = (1)/( 4), 0 le theta le pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos \theta \cdot \cos 2\theta \cdot \cos 3\theta = \frac{1}{4} \) for \( 0 \leq \theta \leq \pi \), we will follow these steps: ### Step 1: Rewrite the Equation We start with the equation: \[ \cos \theta \cdot \cos 2\theta \cdot \cos 3\theta = \frac{1}{4} \] We can multiply both sides by 4 to simplify: \[ 4 \cos \theta \cdot \cos 2\theta \cdot \cos 3\theta = 1 \] ### Step 2: Use the Product-to-Sum Formulas We can use the product-to-sum identities to simplify the left-hand side. Recall that: \[ 2 \cos A \cos B = \cos(A + B) + \cos(A - B) \] Applying this to \( \cos \theta \cdot \cos 3\theta \): \[ 2 \cos \theta \cdot \cos 3\theta = \cos(4\theta) + \cos(2\theta) \] Thus, we can rewrite: \[ 4 \cos \theta \cdot \cos 2\theta \cdot \cos 3\theta = 2 \cdot (2 \cos \theta \cdot \cos 3\theta) \cdot \cos 2\theta = 2(\cos(4\theta) + \cos(2\theta)) \cdot \cos 2\theta \] ### Step 3: Set Up the New Equation Now we have: \[ 2(\cos(4\theta) + \cos(2\theta)) \cdot \cos 2\theta = 1 \] This simplifies to: \[ \cos(4\theta) + \cos(2\theta) = \frac{1}{2\cos 2\theta} \] ### Step 4: Solve for \( \cos(4\theta) \) Using the identity \( 1 + \cos(4\theta) = 2\cos^2(2\theta) \): \[ \cos(4\theta) = 2\cos^2(2\theta) - 1 \] Substituting this back into the equation gives: \[ 2\cos^2(2\theta) - 1 + \cos(2\theta) = \frac{1}{2\cos 2\theta} \] ### Step 5: Rearranging the Equation Rearranging gives us a quadratic in \( \cos(2\theta) \): \[ 2\cos^2(2\theta) + \cos(2\theta) - 1 + \frac{1}{2\cos 2\theta} = 0 \] Multiplying through by \( 2\cos 2\theta \) to eliminate the fraction leads to: \[ 4\cos^3(2\theta) + 2\cos^2(2\theta) - 2\cos 2\theta - 1 = 0 \] ### Step 6: Finding Roots This cubic equation can be solved using numerical methods or by factoring if possible. We can find the roots for \( \cos(2\theta) \) and then solve for \( \theta \). ### Step 7: Solve for \( \theta \) After finding the values of \( \cos(2\theta) \), we can find \( 2\theta \) and subsequently \( \theta \). ### Step 8: Check the Range Since we need \( 0 \leq \theta \leq \pi \), we will check the values obtained from the roots to ensure they fall within this range. ### Final Values After solving, we will find the values of \( \theta \) that satisfy the original equation.
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -12

    ICSE|Exercise Section - B |10 Videos
  • MODEL TEST PAPER -12

    ICSE|Exercise Section - C |10 Videos
  • MODEL TEST PAPER -11

    ICSE|Exercise Sections - C|10 Videos
  • MODEL TEST PAPER -13

    ICSE|Exercise SECTION -C|10 Videos

Similar Questions

Explore conceptually related problems

Solve cos theta+cos 3 theta-2 cos 2 theta=0 .

Solve cos theta+cos 2theta+cos 3theta=0 .

Solve : cos 6 theta + cos 4 theta + cos 2 theta + 1 = 0, 0^(@) lt theta lt 180^(@)

Solve: cos2theta=cos^(2)theta

Solve: sin 2 theta = cos 3 theta.

Solve sin^(2) theta-cos theta=1/4, 0 le theta le 2pi .

Find all the values of theta satisfying the equation cos 2 theta - cos 8 theta + cos 6 theta =1, such that 0 le theta le pi.

Solve sin 2 theta+cos theta=0 .

solve cos^(2)theta+cos theta=1

Solve: cos5theta=cos2theta