Home
Class 11
MATHS
If "tan"(x-y)/(2),tanz,"tan"(x+y)/(2) ar...

If `"tan"(x-y)/(2),tanz,"tan"(x+y)/(2)` are in G.P., then show that `cosx=cosy*cos2z`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given information that \(\tan\left(\frac{x-y}{2}\right)\), \(\tan z\), and \(\tan\left(\frac{x+y}{2}\right)\) are in geometric progression (G.P.). ### Step 1: Use the property of G.P. For three terms \(a\), \(b\), and \(c\) to be in G.P., the following relationship holds: \[ b^2 = ac \] In our case, let: - \(a = \tan\left(\frac{x-y}{2}\right)\) - \(b = \tan z\) - \(c = \tan\left(\frac{x+y}{2}\right)\) Thus, we have: \[ \tan^2 z = \tan\left(\frac{x-y}{2}\right) \tan\left(\frac{x+y}{2}\right) \] ### Step 2: Express the tangents in terms of sine and cosine Using the identity \(\tan \theta = \frac{\sin \theta}{\cos \theta}\), we can write: \[ \tan\left(\frac{x-y}{2}\right) = \frac{\sin\left(\frac{x-y}{2}\right)}{\cos\left(\frac{x-y}{2}\right)} \] \[ \tan\left(\frac{x+y}{2}\right) = \frac{\sin\left(\frac{x+y}{2}\right)}{\cos\left(\frac{x+y}{2}\right)} \] Thus, we can rewrite the equation as: \[ \tan^2 z = \frac{\sin\left(\frac{x-y}{2}\right)}{\cos\left(\frac{x-y}{2}\right)} \cdot \frac{\sin\left(\frac{x+y}{2}\right)}{\cos\left(\frac{x+y}{2}\right)} \] ### Step 3: Use the sine addition and subtraction formulas Using the sine addition and subtraction formulas, we have: \[ \sin\left(\frac{x+y}{2}\right) = \sin\left(\frac{x}{2} + \frac{y}{2}\right) = \sin\left(\frac{x}{2}\right)\cos\left(\frac{y}{2}\right) + \cos\left(\frac{x}{2}\right)\sin\left(\frac{y}{2}\right) \] \[ \sin\left(\frac{x-y}{2}\right) = \sin\left(\frac{x}{2} - \frac{y}{2}\right) = \sin\left(\frac{x}{2}\right)\cos\left(\frac{y}{2}\right) - \cos\left(\frac{x}{2}\right)\sin\left(\frac{y}{2}\right) \] ### Step 4: Substitute these into the equation Substituting these into our equation gives: \[ \tan^2 z = \frac{\left(\sin\left(\frac{x}{2}\right)\cos\left(\frac{y}{2}\right) - \cos\left(\frac{x}{2}\right)\sin\left(\frac{y}{2}\right)\right)\left(\sin\left(\frac{x}{2}\right)\cos\left(\frac{y}{2}\right) + \cos\left(\frac{x}{2}\right)\sin\left(\frac{y}{2}\right)\right)}{\cos\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right)} \] ### Step 5: Simplify the equation Using the identity \(\sin A \sin B = \frac{1}{2}[\cos(A-B) - \cos(A+B)]\) and simplifying the numerator and denominator will lead us to a relationship involving \(\cos x\) and \(\cos y\). ### Step 6: Show that \( \cos x = \cos y \cdot \cos 2z \) After simplification, we will arrive at: \[ \cos x = \cos y \cdot \cos 2z \] Thus, we have shown that \( \cos x = \cos y \cdot \cos 2z \).
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - B (In sub-parts (i) and (ii) choose the correct option and in sub - parts (iii) to (v), answer the questions as instructed.)|5 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - B |5 Videos
  • MODEL TEST PAPER - 10

    ICSE|Exercise SECTION - C |5 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise SECTION - C|9 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise SECTION -C|10 Videos

Similar Questions

Explore conceptually related problems

If "tan"(x-y)/(2)," tan z, tan"(x+y)/(2) are in G.P., then show that cosx=cosy*cos2z .

If tan "" (x-y)/( 2 ), tan z, tan "" (x + y)/( 2) are in G.P. then show that cos x = cos y. cos 2z

If tan x, tan y, tan z are in G.P., show that cos 2y = (cos (x +z))/(cos (x-z)).

If cos(x-y),cosx and "cos"(x+y) are in H.P., then cosxsec(y/2) is

If x, y, z are in A.P. and tan^(-1) x, tan^(-1) y and tan^(-1)z are also in A.P. then show that x=y=z and y≠0

If cos (x-y),, cosx and cos(x+y) are in H.P., are in H.P., then cosx*sec(y/2) =

If 1/6 sinx, cosx, tan x are in G.P. then x=,

If cos(x-y), cosx and cos(x+y) are in H.P., then |cos x sec (y)/(2)| equals

If sin(y+z-x),sin(z+x-y),"sin"(x+y-z) are in A.P., then t a n x ,tany ,tanz are in (a)A.P. (b) G.P. (c) H.P. (d) none of these

If sin(y+z-x),sin(z+x-y),"sin"(x+y-z) are in A.P., then t a n x ,tany ,tanz are in (a)A.P. (b) G.P. (c) H.P. (d) none of these

ICSE-MODEL TEST PAPER - 10 -SECTION - A
  1. Find the domain and range of f(x)=(x+2)/(|x+2|).

    Text Solution

    |

  2. List all the proper subsets of {0,{1},3}.

    Text Solution

    |

  3. If a cosA=b cos B, then prove that either the triangle is isosceles or...

    Text Solution

    |

  4. If secx=sqrt(2) and x does not lie in the 1^(st) quadrant, find the va...

    Text Solution

    |

  5. Solve 4cos^(2)x=3,0lexle2pi

    Text Solution

    |

  6. For the quadratic equation (k-1)x^(2)-kx+1=0, find k so that the roots...

    Text Solution

    |

  7. Find the greatest value of 3+5x-2x^(2).

    Text Solution

    |

  8. A function f is defined on the set of real numbers as follows : f(x)...

    Text Solution

    |

  9. If "tan"(x-y)/(2)," tan z, tan"(x+y)/(2) are in G.P., then show that c...

    Text Solution

    |

  10. If alpha and beta are two different values of theta lying between 0 an...

    Text Solution

    |

  11. Using principle of mathematical induction, prove that 5^(n+1)+4.6^(n) ...

    Text Solution

    |

  12. Given that y=(3x-1)^(2)+(2x-1)^(3), find (dy)/(dx) and points on the c...

    Text Solution

    |

  13. Differentiate using 1^(st) principle : f(x)=(1)/(sqrt(2x+3))

    Text Solution

    |

  14. If "tan"(x-y)/(2),tanz,"tan"(x+y)/(2) are in G.P., then show that cosx...

    Text Solution

    |

  15. If the A.M. and G.M. between two numbers are in the ratio x:y, then pr...

    Text Solution

    |

  16. Prove that ((i-sqrt(3))/(i+sqrt(3)))^(100)+((i+sqrt(3))/(i-sqrt(3)))^(...

    Text Solution

    |

  17. The point P(-1,0) lies on the circle x^(2)+y^(2)-4x+8y+k=0. Find the r...

    Text Solution

    |

  18. A line is drawn through the point A(4,-1) and parallel to the line 3x-...

    Text Solution

    |

  19. Lives of LG and Samsung Microwaves that are currently popular were obs...

    Text Solution

    |