To find the coordinates of the centroid of the triangle given the midpoints of its sides, we can follow these steps:
### Step 1: Identify the midpoints
The midpoints of the sides of the triangle are given as:
- Midpoint D (AC) = (2, 3, 4)
- Midpoint E (BC) = (1, 5, -1)
- Midpoint F (AB) = (0, 4, -2)
### Step 2: Set up the equations for the vertices
Let the vertices of the triangle be A (x1, y1, z1), B (x2, y2, z2), and C (x3, y3, z3).
Using the midpoint formula for three-dimensional coordinates, we can express the midpoints in terms of the vertices:
1. For midpoint D (AC):
\[
\left(\frac{x1 + x3}{2}, \frac{y1 + y3}{2}, \frac{z1 + z3}{2}\right) = (2, 3, 4)
\]
This gives us three equations:
\[
\frac{x1 + x3}{2} = 2 \implies x1 + x3 = 4 \quad (1)
\]
\[
\frac{y1 + y3}{2} = 3 \implies y1 + y3 = 6 \quad (2)
\]
\[
\frac{z1 + z3}{2} = 4 \implies z1 + z3 = 8 \quad (3)
\]
2. For midpoint E (BC):
\[
\left(\frac{x2 + x3}{2}, \frac{y2 + y3}{2}, \frac{z2 + z3}{2}\right) = (1, 5, -1)
\]
This gives us:
\[
\frac{x2 + x3}{2} = 1 \implies x2 + x3 = 2 \quad (4)
\]
\[
\frac{y2 + y3}{2} = 5 \implies y2 + y3 = 10 \quad (5)
\]
\[
\frac{z2 + z3}{2} = -1 \implies z2 + z3 = -2 \quad (6)
\]
3. For midpoint F (AB):
\[
\left(\frac{x1 + x2}{2}, \frac{y1 + y2}{2}, \frac{z1 + z2}{2}\right) = (0, 4, -2)
\]
This gives us:
\[
\frac{x1 + x2}{2} = 0 \implies x1 + x2 = 0 \quad (7)
\]
\[
\frac{y1 + y2}{2} = 4 \implies y1 + y2 = 8 \quad (8)
\]
\[
\frac{z1 + z2}{2} = -2 \implies z1 + z2 = -4 \quad (9)
\]
### Step 3: Solve the equations
Now we have a system of equations to solve for the coordinates of the vertices A, B, and C.
From equation (7):
\[
x2 = -x1 \quad (10)
\]
Substituting (10) into (4):
\[
-x1 + x3 = 2 \implies x3 = x1 + 2 \quad (11)
\]
Substituting (11) into (1):
\[
x1 + (x1 + 2) = 4 \implies 2x1 + 2 = 4 \implies 2x1 = 2 \implies x1 = 1
\]
Using (10):
\[
x2 = -1
\]
Using (11):
\[
x3 = 1 + 2 = 3
\]
Now for y-coordinates:
From (8):
\[
y2 = 8 - y1 \quad (12)
\]
Substituting (12) into (5):
\[
(8 - y1) + y3 = 10 \implies y3 = 2 + y1 \quad (13)
\]
Substituting (13) into (2):
\[
y1 + (2 + y1) = 6 \implies 2y1 + 2 = 6 \implies 2y1 = 4 \implies y1 = 2
\]
Using (12):
\[
y2 = 8 - 2 = 6
\]
Using (13):
\[
y3 = 2 + 2 = 4
\]
Now for z-coordinates:
From (9):
\[
z2 = -4 - z1 \quad (14)
\]
Substituting (14) into (6):
\[
(-4 - z1) + z3 = -2 \implies z3 = 2 + z1 \quad (15)
\]
Substituting (15) into (3):
\[
z1 + (2 + z1) = 8 \implies 2z1 + 2 = 8 \implies 2z1 = 6 \implies z1 = 3
\]
Using (14):
\[
z2 = -4 - 3 = -7
\]
Using (15):
\[
z3 = 2 + 3 = 5
\]
### Step 4: Coordinates of vertices
Now we have the coordinates of the vertices:
- A (1, 2, 3)
- B (-1, 6, -7)
- C (3, 4, 5)
### Step 5: Calculate the centroid
The coordinates of the centroid (G) of a triangle are given by:
\[
G\left(\frac{x1 + x2 + x3}{3}, \frac{y1 + y2 + y3}{3}, \frac{z1 + z2 + z3}{3}\right)
\]
Substituting the values:
\[
G\left(\frac{1 + (-1) + 3}{3}, \frac{2 + 6 + 4}{3}, \frac{3 + (-7) + 5}{3}\right)
\]
Calculating each coordinate:
\[
G\left(\frac{3}{3}, \frac{12}{3}, \frac{1}{3}\right) = (1, 4, \frac{1}{3})
\]
### Final Answer
The coordinates of the centroid of the triangle are:
\[
(1, 4, \frac{1}{3})
\]