Home
Class 12
MATHS
Evaluate : int(I+tan^2)/(I+cot^2x)dx...

Evaluate : `int(I+tan^2)/(I+cot^2x)dx`

A

`tan x - 1 + c`

B

`tan x - x + c `

C

`cot x - x +c`

D

`tan x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{1 + \tan^2 x}{1 + \cot^2 x} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start with the expression: \[ \frac{1 + \tan^2 x}{1 + \cot^2 x} \] Recall that \( \cot^2 x = \frac{1}{\tan^2 x} \). Thus, we can rewrite \( 1 + \cot^2 x \) as: \[ 1 + \cot^2 x = 1 + \frac{1}{\tan^2 x} = \frac{\tan^2 x + 1}{\tan^2 x} \] Now substituting this back into our integral, we have: \[ \int \frac{1 + \tan^2 x}{\frac{\tan^2 x + 1}{\tan^2 x}} \, dx = \int \frac{(1 + \tan^2 x) \tan^2 x}{\tan^2 x + 1} \, dx \] Since \( 1 + \tan^2 x = \sec^2 x \), we can simplify further: \[ \int \tan^2 x \, dx \] ### Step 2: Use the identity for \( \tan^2 x \) We know that: \[ \tan^2 x = \sec^2 x - 1 \] Substituting this into our integral gives: \[ \int \tan^2 x \, dx = \int (\sec^2 x - 1) \, dx \] ### Step 3: Integrate the expression Now we can integrate: \[ \int (\sec^2 x - 1) \, dx = \int \sec^2 x \, dx - \int 1 \, dx \] The integral of \( \sec^2 x \) is \( \tan x \), and the integral of \( 1 \) is \( x \): \[ = \tan x - x + C \] ### Final Answer Thus, the evaluated integral is: \[ \int \frac{1 + \tan^2 x}{1 + \cot^2 x} \, dx = \tan x - x + C \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(tanxsec^2x)/(1-tan^2x)dx

Evaluate: (i) int(sin^2x)/(1+cosx)\ dx (ii) int(sec^2x+cos e c^2x)\ dx

Evaluate: (i) int(sinx)/(1+cos^2x)\ dx (ii) int(2x^3)/(4+x^8)\ dx

Evaluate: (i) int(sinx)/(1+cos^2x)\ dx (ii) int(2x^3)/(4+x^8)\ dx

Evaluate int\tan^2x\dx

Evaluate: int(tan^-1x)^2/(1+x^2)dx

Evaluate: (i) int1/(x^2)cos^2(1/x)\ dx (ii) intsec^4xtanx\ dx

Evaluate: (i) int1/(x^2)cos^2(1/x)\ dx (ii) intsec^4xtanx\ dx

Evaluate: int(sec^2x)/(1-tan^2x)\ dx

Evaluate: int(tanx-x)tan^2x dx