Home
Class 12
MATHS
If A=[(cosalpha,sinalpha),(-sinalpha,cos...

If `A=[(cosalpha,sinalpha),(-sinalpha,cosalpha)]` prove that `A.A^(T)=1` Hence find `A^(-1)`

Text Solution

Verified by Experts

The correct Answer is:
`A^(-1)[{:(cosalpha,-sinalpha),(sinalpha,cos alpha):}]`
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

If A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] is such that A^T=A^(-1) , find alpha

If A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] is such that A^T=A^(-1) , find alpha .

If A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] , then verify that A^T\ A=I_2 .

If A=[[sinalpha,cosalpha],[-cosalpha,sinalpha]] , verify that A^T A=I_2

If A=[[cosalpha, sinalpha],[-sinalpha, cosalpha]] , prove by mathematicasl induction that, A^n=[[cosnalpha, sin nalpha],[-sin nalpha,cos nalpha]] for every natural number n

If (i) A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] , then verify that AprimeA = I .(ii) A=[[sinalpha,cosalpha],[-cosalpha,sinalpha]] , then verify that AprimeA = I .

If A_alpha=[[cosalpha ,sinalpha],[-sinalpha,cosalpha]] , then prove that A_alphaA_beta=A_(alpha+beta) for every positive integer n .

Let A_(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] , then :

If A=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] is identity matrix, then write the value of alpha .

If A= [[cosalpha,sinalpha],[-sinalpha,cosalpha]] then show that A^2=[[cos2alpha,sin2alpha],[-sin2alpha,cos2alpha]]