Home
Class 12
MATHS
If y=x^x then prove that is (dy)/(dx)=x...

If `y=x^x` then prove that is `(dy)/(dx)=x^(x)log_(e)(ex)` .

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

If y=(e^(x))/(x) then prove that x(dy)/(dx)=y (x-1)

If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx) .

If x=e^(x//y) , prove that (dy)/(dx)=(x-y)/(xlogx)

If y=e^x+e^-x , prove that (dy)/(dx)=sqrt(y^2-4)

If x=e^(x/y) ,prove that (dy)/(dx)=(x-y)/(xlogx)

If y=e^x+e^(-x) , prove that (dy)/(dx)=sqrt(y^2-4)

If y=a^x^a^x^...^(((((oo))))) , then prove that (dy)/(dx)=(y^2(log)_e y)/(x(1-y(log)_e x(log)_e y)

If y=a^x^a^x^...^(((((oo))))) , then prove that (dy)/(dx)=(y^2(log)_e y)/(x(1-y(log)_e x(log)_e y)

If x=y log(xy) , then prove that (dy)/(dx) = (y (x-y))/(x(x+y)) .

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)+e^(y-x)=0