Home
Class 12
MATHS
Evaluate : int(pi/5)^((3pi)/(10))(cosx)/...

Evaluate : `int_(pi/5)^((3pi)/(10))(cosx)/(sinx+cosx)dx `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} \frac{\cos x}{\sin x + \cos x} \, dx, \] we will use the property of definite integrals: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx. \] ### Step 1: Apply the property of definite integrals Let \( a = \frac{\pi}{5} \) and \( b = \frac{3\pi}{10} \). First, we calculate \( a + b \): \[ a + b = \frac{\pi}{5} + \frac{3\pi}{10} = \frac{2\pi}{10} + \frac{3\pi}{10} = \frac{5\pi}{10} = \frac{\pi}{2}. \] Now, we can rewrite the integral using the property: \[ I = \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} \frac{\cos\left(\frac{\pi}{2} - x\right)}{\sin\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{\pi}{2} - x\right)} \, dx. \] ### Step 2: Simplify the integrand Using the trigonometric identities: \[ \cos\left(\frac{\pi}{2} - x\right) = \sin x, \] \[ \sin\left(\frac{\pi}{2} - x\right) = \cos x, \] we can rewrite the integral: \[ I = \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} \frac{\sin x}{\cos x + \sin x} \, dx. \] ### Step 3: Add the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} \frac{\cos x}{\sin x + \cos x} \, dx \) 2. \( I = \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} \frac{\sin x}{\sin x + \cos x} \, dx \) Adding these two equations: \[ 2I = \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} \left( \frac{\cos x + \sin x}{\sin x + \cos x} \right) \, dx = \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} 1 \, dx. \] ### Step 4: Evaluate the integral of 1 The integral of 1 over the limits \( \frac{\pi}{5} \) to \( \frac{3\pi}{10} \) is: \[ \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} 1 \, dx = \left[ x \right]_{\frac{\pi}{5}}^{\frac{3\pi}{10}} = \frac{3\pi}{10} - \frac{\pi}{5}. \] Calculating this: \[ \frac{3\pi}{10} - \frac{2\pi}{10} = \frac{\pi}{10}. \] ### Step 5: Solve for \( I \) Now we have: \[ 2I = \frac{\pi}{10} \implies I = \frac{\pi}{20}. \] Thus, the final answer is: \[ \boxed{\frac{\pi}{20}}. \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

I=int_(pi//5)^(3pi//10) (sinx)/(sinx+cosx)dx is equal to

Evaluate: int_(-pi/2)^(pi/2)sin^2xcos^2x(sinx+cosx)dx

Evaluate: int_(-pi/2)^(pi/2)sin^2xcos^2x(sinx+cosx)dx

Evaluate int_(0)^(pi//2)(sinx-cosx)/(1+sinx*cosx)dx

Evaluate: int_0^(pi/2)(x+sinx)/(1+cosx) dx

Evaluate : int_(0)^(pi) (dx)/(5+4cosx)

Evaluate : int_(0)^(pi//2) (cosx)/((1+sin x)(2+sinx)) dx

Evaluate :- int_(0)^(pi//2)(sinx+cosx)dx

Evaluate int_(0)^(pi)(e^(cosx))/(e^(cosx)+e^(-cosx))dx .

int_(0)^((pi)/(2))(sin^(3)x)/(sinx+cosx)dx is equal to