Home
Class 12
MATHS
Using properties of determinant, if |(-a...

Using properties of determinant, if `|(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)| = mua^2b^2c^2`, find `mu `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by: \[ D = \begin{vmatrix} -a^2 & ab & ac \\ ab & -b^2 & bc \\ ac & bc & -c^2 \end{vmatrix} \] and find the value of \(\mu\) such that \(D = \mu a^2 b^2 c^2\). ### Step 1: Factor out common terms from the determinant We can observe that each column has a common factor. Specifically, we can factor out \(-a\) from the first column, \(b\) from the second column, and \(c\) from the third column. Thus, we can rewrite the determinant as: \[ D = (-a)(b)(c) \begin{vmatrix} a & b & c \\ b & -b & \frac{bc}{b} \\ c & \frac{bc}{c} & -c \end{vmatrix} \] This simplifies to: \[ D = -abc \begin{vmatrix} a & b & c \\ b & -b & c \\ c & b & -c \end{vmatrix} \] ### Step 2: Simplify the determinant Now we will evaluate the determinant: \[ \begin{vmatrix} a & b & c \\ b & -b & c \\ c & b & -c \end{vmatrix} \] Using the determinant expansion along the first row: \[ = a \begin{vmatrix} -b & c \\ b & -c \end{vmatrix} - b \begin{vmatrix} b & c \\ c & -c \end{vmatrix} + c \begin{vmatrix} b & -b \\ c & b \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} -b & c \\ b & -c \end{vmatrix} = (-b)(-c) - (c)(b) = bc - bc = 0 \) 2. \( \begin{vmatrix} b & c \\ c & -c \end{vmatrix} = (b)(-c) - (c)(c) = -bc - c^2 = -bc - c^2 \) 3. \( \begin{vmatrix} b & -b \\ c & b \end{vmatrix} = (b)(b) - (-b)(c) = b^2 + bc = b^2 + bc \) Putting it all together: \[ D = a(0) - b(-bc - c^2) + c(b^2 + bc) \] This simplifies to: \[ D = b(bc + c^2) + c(b^2 + bc) = b^2c + bc^2 + cb^2 + c^2b = 2b^2c + 2bc^2 \] ### Step 3: Factor out common terms Now we can factor out \(bc\): \[ D = 2bc(b + c) \] ### Step 4: Relate to the original expression Now we need to relate this back to the expression given in the problem: \[ D = \mu a^2 b^2 c^2 \] From our calculations, we have: \[ D = -abc \cdot 2bc(b + c) \] ### Step 5: Compare coefficients Now we can equate this to \(\mu a^2 b^2 c^2\): \[ \mu a^2 b^2 c^2 = -abc \cdot 2bc(b + c) \] Dividing both sides by \(a^2 b^2 c^2\): \[ \mu = -2(b + c) \] ### Conclusion Thus, the value of \(\mu\) is: \[ \mu = 4 \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinants, prove that |(-a^2,ab,ac),(ba,-b^2,bc),(ca,cb,-c^2)|=4a^2 b^2 c^2

abs([-a^2,ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]) = 4a^2.b^2.c^2

Using properties of determinants, prove the following |(a^2,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)|=1+a^2+b^2+c^2 .

What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

Using properties of determinants, prove the following |(a^2+1,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)|=1+a^2+b^2+c^2 .

Using properties of determinant prove that |(a^(2)+1, ab, ac),(ab, b^(2)+1, bc),(ca, cb,c^(2)+1)|=(1+a^(2)+b^(2)+c^(2)) .

Using properties of determinants, prove that : |{:(a^(2)+1,ab,ac),(ba,b^(2)+1,bc),(ca,cb,c^(2)+1):}|=a^(2)+b^(2)+c^(2)+1

Prove that |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]|=1+a^2+b^2+c^2

Prove that: |-a^2 ab ac ba -b^2 bc ac bc c^2| =4a^2b^2c^2 .

If ∣ -a a^2 ab ac ab -b^2 bc ac bc -c^2 | = ka^2b^2c^2 , then k is equal to