Home
Class 12
MATHS
If a matrix A=((3,2,0),(1,4,0),(0,0,5)) ...

If a matrix `A=((3,2,0),(1,4,0),(0,0,5))` show that `A^2-7A+10I_(3) = 0` and hence find `A^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that \( A^2 - 7A + 10I_3 = 0 \) for the matrix \( A = \begin{pmatrix} 3 & 2 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix} \) and then find the inverse of \( A \). ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 3 & 2 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix} \cdot \begin{pmatrix} 3 & 2 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix} \] Calculating each element of the resulting matrix: - First row, first column: \( 3 \cdot 3 + 2 \cdot 1 + 0 \cdot 0 = 9 + 2 + 0 = 11 \) - First row, second column: \( 3 \cdot 2 + 2 \cdot 4 + 0 \cdot 0 = 6 + 8 + 0 = 14 \) - First row, third column: \( 3 \cdot 0 + 2 \cdot 0 + 0 \cdot 5 = 0 + 0 + 0 = 0 \) - Second row, first column: \( 1 \cdot 3 + 4 \cdot 1 + 0 \cdot 0 = 3 + 4 + 0 = 7 \) - Second row, second column: \( 1 \cdot 2 + 4 \cdot 4 + 0 \cdot 0 = 2 + 16 + 0 = 18 \) - Second row, third column: \( 1 \cdot 0 + 4 \cdot 0 + 0 \cdot 5 = 0 + 0 + 0 = 0 \) - Third row, first column: \( 0 \cdot 3 + 0 \cdot 1 + 5 \cdot 0 = 0 + 0 + 0 = 0 \) - Third row, second column: \( 0 \cdot 2 + 0 \cdot 4 + 5 \cdot 0 = 0 + 0 + 0 = 0 \) - Third row, third column: \( 0 \cdot 0 + 0 \cdot 0 + 5 \cdot 5 = 0 + 0 + 25 = 25 \) Thus, we have: \[ A^2 = \begin{pmatrix} 11 & 14 & 0 \\ 7 & 18 & 0 \\ 0 & 0 & 25 \end{pmatrix} \] ### Step 2: Calculate \( 7A \) Now, we calculate \( 7A \): \[ 7A = 7 \cdot \begin{pmatrix} 3 & 2 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix} = \begin{pmatrix} 21 & 14 & 0 \\ 7 & 28 & 0 \\ 0 & 0 & 35 \end{pmatrix} \] ### Step 3: Calculate \( 10I_3 \) The identity matrix \( I_3 \) is: \[ I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Thus, \[ 10I_3 = 10 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{pmatrix} \] ### Step 4: Calculate \( A^2 - 7A + 10I_3 \) Now we can compute \( A^2 - 7A + 10I_3 \): \[ A^2 - 7A + 10I_3 = \begin{pmatrix} 11 & 14 & 0 \\ 7 & 18 & 0 \\ 0 & 0 & 25 \end{pmatrix} - \begin{pmatrix} 21 & 14 & 0 \\ 7 & 28 & 0 \\ 0 & 0 & 35 \end{pmatrix} + \begin{pmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{pmatrix} \] Calculating element-wise: - First row: \( 11 - 21 + 10 = 0 \), \( 14 - 14 + 0 = 0 \), \( 0 - 0 + 0 = 0 \) - Second row: \( 7 - 7 + 0 = 0 \), \( 18 - 28 + 10 = 0 \), \( 0 - 0 + 0 = 0 \) - Third row: \( 0 - 0 + 0 = 0 \), \( 0 - 0 + 0 = 0 \), \( 25 - 35 + 10 = 0 \) Thus, we have: \[ A^2 - 7A + 10I_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] This shows that \( A^2 - 7A + 10I_3 = 0 \). ### Step 5: Find \( A^{-1} \) From the equation \( A^2 - 7A + 10I_3 = 0 \), we can rearrange it to find \( A^{-1} \): \[ 10I_3 = 7A - A^2 \] Multiplying both sides by \( \frac{1}{10} \): \[ I_3 = \frac{7}{10}A - \frac{1}{10}A^2 \] Now, multiplying both sides by \( A^{-1} \): \[ A^{-1} = \frac{1}{10}(7I_3 - A) \] Substituting \( A \) and \( I_3 \): \[ A^{-1} = \frac{1}{10} \left( 7 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 3 & 2 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix} \right) \] Calculating: \[ = \frac{1}{10} \begin{pmatrix} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{pmatrix} - \frac{1}{10} \begin{pmatrix} 3 & 2 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix} \] \[ = \frac{1}{10} \begin{pmatrix} 7 - 3 & 0 - 2 & 0 \\ 0 - 1 & 7 - 4 & 0 \\ 0 & 0 & 7 - 5 \end{pmatrix} \] \[ = \frac{1}{10} \begin{pmatrix} 4 & -2 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix} \] Thus, the inverse of \( A \) is: \[ A^{-1} = \begin{pmatrix} \frac{4}{10} & \frac{-2}{10} & 0 \\ \frac{-1}{10} & \frac{3}{10} & 0 \\ 0 & 0 & \frac{2}{10} \end{pmatrix} = \begin{pmatrix} 0.4 & -0.2 & 0 \\ -0.1 & 0.3 & 0 \\ 0 & 0 & 0.2 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

If A=[(3, 2, 0),( 1, 4 ,0 ),(0 ,0 ,5)] , show that A^2-7A+10 I=O .

If A=[(3, 1),( 1, 2)] , show that A^2-5A+5I=0 . Hence, find A^(-1) .

If A=[(2,-3),(3,4)], show the A^2-6A+17I=0. Hence find A^-1

Show that the matrix A=[[1,2,2],[2,1,2],[2,2,1]] satisfies the equation A^2-4A-5I_3=0 and hence find A^(-1)

For the matrix A=[{:(,3,2),(,1,1):}] Find a & b so that A^(2)+aA+bI=0 . Hence find A^(-1)

If A=[[3,1],[-1,2]], I=[[1,0],[0,1]] and O=[[0,0],[0,0]] , show that A^2-5A+7I=0 . Hence find A^(-1) .

if A =[{:(1,0,2),(0,2,1),(2,0,3):}] , prove that A^3-6A^2+7A+2I=0

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

For the matrix A=[[3 ,1],[ 7, 5]], find x and y sot that A^2+x I+y Adot=0 Hence, Find A^(-1)dot

Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)-3I)/2