Home
Class 12
MATHS
Evaluate : int(0)^(1)(log(1+x))/(1+x^2)d...

Evaluate : `int_(0)^(1)(log(1+x))/(1+x^2)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_0^1 \frac{\log(1+x)}{1+x^2} \, dx, \] we will use the substitution \( x = \tan \theta \). ### Step 1: Substitution Let \( x = \tan \theta \). Then, the differential \( dx = \sec^2 \theta \, d\theta \). ### Step 2: Change of Limits When \( x = 0 \), \( \theta = \tan^{-1}(0) = 0 \). When \( x = 1 \), \( \theta = \tan^{-1}(1) = \frac{\pi}{4} \). Thus, the limits change from \( 0 \) to \( \frac{\pi}{4} \). ### Step 3: Rewrite the Integral Now, we rewrite the integral: \[ I = \int_0^{\frac{\pi}{4}} \frac{\log(1+\tan \theta)}{1+\tan^2 \theta} \sec^2 \theta \, d\theta. \] Using the identity \( 1 + \tan^2 \theta = \sec^2 \theta \), we can simplify: \[ I = \int_0^{\frac{\pi}{4}} \log(1+\tan \theta) \, d\theta. \] ### Step 4: Symmetry in the Integral Next, we will use the property of the integral. We can express \( I \) in another form by substituting \( \theta = \frac{\pi}{4} - t \): \[ I = \int_0^{\frac{\pi}{4}} \log(1+\tan(\frac{\pi}{4}-t)) \, dt. \] Using the identity \( \tan(\frac{\pi}{4}-t) = \frac{1 - \tan t}{1 + \tan t} \): \[ I = \int_0^{\frac{\pi}{4}} \log\left(1 + \frac{1 - \tan t}{1 + \tan t}\right) \, dt. \] ### Step 5: Simplifying the Logarithm The expression simplifies to: \[ 1 + \frac{1 - \tan t}{1 + \tan t} = \frac{(1 + \tan t) + (1 - \tan t)}{1 + \tan t} = \frac{2}{1 + \tan t}. \] Thus, we have: \[ I = \int_0^{\frac{\pi}{4}} \log\left(\frac{2}{1+\tan t}\right) \, dt = \int_0^{\frac{\pi}{4}} \log(2) \, dt - \int_0^{\frac{\pi}{4}} \log(1+\tan t) \, dt. \] ### Step 6: Combining the Integrals This gives us: \[ I = \frac{\pi}{4} \log(2) - I. \] ### Step 7: Solving for \( I \) Now, we can solve for \( I \): \[ 2I = \frac{\pi}{4} \log(2) \implies I = \frac{\pi}{8} \log(2). \] ### Final Result Thus, the value of the integral is: \[ \boxed{\frac{\pi}{8} \log(2)}. \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1)(8log(1+x))/(1+x^(2))dx is

Evaluate int_(0)^(1)(ln(1+x))/(1+x)dx

Evaluate: int_(0)^(1)(xe^(x))/(1+x)^(2) dx

Evaluate : int_(0)^(1)log ((1)/(x) -1) dx

Evaluate: int_(0)^(1) log (1/x-1)dx

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=

Evaluate : int_(1)^(2) (cos (log x))/(x) dx

Evaluate int_(0)^(1)((log(1/x))^(n-1)dx .

int_(0)^(1)x log (1+2 x)dx

Evaluate int_(-1)^(1) log ((2-x)/( 2+x)) dx