Home
Class 12
MATHS
Using integration, find the area of the ...

Using integration, find the area of the following region: `R={(x,y):x^2leyle|x|}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the region \( R = \{(x,y) : x^2 \leq y \leq |x|\} \), we will follow these steps: ### Step 1: Identify the curves The region is bounded by two curves: 1. \( y = x^2 \) (a parabola opening upwards) 2. \( y = |x| \) (a V-shaped graph) ### Step 2: Find the points of intersection To find the points where these curves intersect, we set: \[ x^2 = |x| \] This gives us two cases to consider: - Case 1: \( x \geq 0 \) (where \( |x| = x \)) \[ x^2 = x \implies x^2 - x = 0 \implies x(x - 1) = 0 \] Thus, \( x = 0 \) or \( x = 1 \). - Case 2: \( x < 0 \) (where \( |x| = -x \)) \[ x^2 = -x \implies x^2 + x = 0 \implies x(x + 1) = 0 \] Thus, \( x = 0 \) or \( x = -1 \). The points of intersection are \( (0, 0) \), \( (1, 1) \), and \( (-1, 1) \). ### Step 3: Set up the integral for the area The area \( A \) can be calculated by integrating the difference between the upper curve and the lower curve from the leftmost intersection point to the rightmost intersection point. The area can be split into two parts due to symmetry. For \( x \) from \( 0 \) to \( 1 \): - Upper curve: \( y = |x| = x \) - Lower curve: \( y = x^2 \) Thus, the area from \( 0 \) to \( 1 \) is: \[ A_1 = \int_0^1 (x - x^2) \, dx \] For \( x \) from \( -1 \) to \( 0 \): - Upper curve: \( y = |x| = -x \) - Lower curve: \( y = x^2 \) Thus, the area from \( -1 \) to \( 0 \) is: \[ A_2 = \int_{-1}^0 (-x - x^2) \, dx \] ### Step 4: Calculate the area Calculating \( A_1 \): \[ A_1 = \int_0^1 (x - x^2) \, dx = \left[ \frac{x^2}{2} - \frac{x^3}{3} \right]_0^1 = \left( \frac{1^2}{2} - \frac{1^3}{3} \right) - \left( 0 - 0 \right) = \frac{1}{2} - \frac{1}{3} = \frac{3}{6} - \frac{2}{6} = \frac{1}{6} \] Calculating \( A_2 \): \[ A_2 = \int_{-1}^0 (-x - x^2) \, dx = \left[ -\frac{x^2}{2} - \frac{x^3}{3} \right]_{-1}^0 = \left( 0 - 0 \right) - \left( -\frac{(-1)^2}{2} - \frac{(-1)^3}{3} \right) = 0 - \left( -\frac{1}{2} + \frac{1}{3} \right) \] \[ = \frac{1}{2} - \frac{1}{3} = \frac{3}{6} - \frac{2}{6} = \frac{1}{6} \] ### Step 5: Total area The total area \( A \) is: \[ A = A_1 + A_2 = \frac{1}{6} + \frac{1}{6} = \frac{2}{6} = \frac{1}{3} \] Thus, the area of the region \( R \) is \( \frac{1}{3} \).
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

Using integration, find the area of the following region : {(x , y);\ |x+2|lt=ylt=sqrt(20-x^2)}

Using integration, find the area of the following region : {(x, y) : x^(2) + y^(2) lt 1 le x + y}

Using integration, find the area of the following region: {(x , y):(x^2)/9+(y^2)/4lt=1lt=x/3+y/2} .

Using integration, find the area of the region {(x,y) : x^(2) +y^(2) le 1, x+y ge 1, x ge 0, y ge 0}

Using integration, find the area of the region: {(x , y):9x^2+y^2lt=36\ "and"\ 3x+ygeq6}

Using integration find the area of the region "{"(x , y")":x^2+y^2lt=2a x ,y^2geqa x ,x ,ygeq0} .

The area of the region R={(x,y)//x^(2)le y le x} is

Using integration ,find the area of the region {(x,y) : y^(2) le 4x, 4x^(2) +4y^(2) le 9 }

Find the area of the region {(x,y)//x^(2)-x-1 le y le -1}

Find the area of the region {(x,y): x^(2)+y^(2) le 1 le x + y}