Home
Class 12
MATHS
Find A=[(0,2y,z),(x,y,-z),(x,-y,z)] sat...

Find `A=[(0,2y,z),(x,y,-z),(x,-y,z)]` satisfies `A^(T) = A^(-1)`

A

`pm1/sqrt2`

B

`pm1/sqrt3`

C

`pm1/sqrt6`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \(x\), \(y\), and \(z\) such that the matrix \(A\) satisfies the condition \(A^T = A^{-1}\). Given the matrix: \[ A = \begin{pmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{pmatrix} \] ### Step 1: Calculate \(A^T\) The transpose of matrix \(A\) is obtained by swapping rows with columns: \[ A^T = \begin{pmatrix} 0 & x & x \\ 2y & y & -y \\ z & -z & z \end{pmatrix} \] ### Step 2: Use the condition \(A^T = A^{-1}\) Since \(A^T = A^{-1}\), we can multiply \(A\) by \(A^T\) and set it equal to the identity matrix \(I\): \[ A \cdot A^T = I \] ### Step 3: Calculate \(A \cdot A^T\) Now we will multiply \(A\) and \(A^T\): \[ A \cdot A^T = \begin{pmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{pmatrix} \cdot \begin{pmatrix} 0 & x & x \\ 2y & y & -y \\ z & -z & z \end{pmatrix} \] Calculating the elements of the resulting matrix: 1. First row, first column: \[ 0 \cdot 0 + 2y \cdot 2y + z \cdot z = 4y^2 + z^2 \] 2. First row, second column: \[ 0 \cdot x + 2y \cdot y + z \cdot (-z) = 2y^2 - z^2 \] 3. First row, third column: \[ 0 \cdot x + 2y \cdot (-y) + z \cdot z = -2y^2 + z^2 \] 4. Second row, first column: \[ x \cdot 0 + y \cdot 2y + (-z) \cdot z = 2y^2 - z^2 \] 5. Second row, second column: \[ x \cdot x + y \cdot y + (-z) \cdot (-z) = x^2 + y^2 + z^2 \] 6. Second row, third column: \[ x \cdot x + y \cdot (-y) + (-z) \cdot z = x^2 - y^2 + z^2 \] 7. Third row, first column: \[ x \cdot 0 + (-y) \cdot 2y + z \cdot z = -2y^2 + z^2 \] 8. Third row, second column: \[ x \cdot x + (-y) \cdot y + z \cdot (-z) = x^2 - y^2 - z^2 \] 9. Third row, third column: \[ x \cdot x + (-y) \cdot (-y) + z \cdot z = x^2 + y^2 + z^2 \] Putting it all together, we have: \[ A \cdot A^T = \begin{pmatrix} 4y^2 + z^2 & 2y^2 - z^2 & -2y^2 + z^2 \\ 2y^2 - z^2 & x^2 + y^2 + z^2 & x^2 - y^2 + z^2 \\ -2y^2 + z^2 & x^2 - y^2 - z^2 & x^2 + y^2 + z^2 \end{pmatrix} \] ### Step 4: Set \(A \cdot A^T\) equal to the identity matrix The identity matrix \(I\) is: \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 5: Set up equations From the equality \(A \cdot A^T = I\), we can set up the following equations: 1. \(4y^2 + z^2 = 1\) (Equation 1) 2. \(x^2 + y^2 + z^2 = 1\) (Equation 2) 3. \(2y^2 - z^2 = 0\) (Equation 3) 4. \(x^2 - y^2 - z^2 = 0\) (Equation 4) ### Step 6: Solve the equations From Equation 3: \[ z^2 = 2y^2 \] Substituting \(z^2\) into Equation 1: \[ 4y^2 + 2y^2 = 1 \implies 6y^2 = 1 \implies y^2 = \frac{1}{6} \implies y = \pm \frac{1}{\sqrt{6}} \] Now substitute \(y^2\) back into the expression for \(z^2\): \[ z^2 = 2 \cdot \frac{1}{6} = \frac{1}{3} \implies z = \pm \frac{1}{\sqrt{3}} \] Now substitute \(y^2\) and \(z^2\) into Equation 2 to find \(x^2\): \[ x^2 + \frac{1}{6} + \frac{1}{3} = 1 \implies x^2 + \frac{1}{6} + \frac{2}{6} = 1 \implies x^2 + \frac{3}{6} = 1 \implies x^2 = \frac{3}{6} = \frac{1}{2} \implies x = \pm \frac{1}{\sqrt{2}} \] ### Final Values Thus, the values are: \[ x = \pm \frac{1}{\sqrt{2}}, \quad y = \pm \frac{1}{\sqrt{6}}, \quad z = \pm \frac{1}{\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos

Similar Questions

Explore conceptually related problems

If matrix A=[(0, 2,y),( z, x, y),(-z, x-y, z)] satisfies A^T=A^(-1) , find x ,\ y ,\ zdot

Find the value of y, if the matrix A = ((0,2y,z),(x,y,-z),(x,-y,z)) obeys the law A^(T).A = I .

Let A=[(0, 2y,z),(x,y,-z),(x,-y,z)] such that A^(T)A=I , then the value of x^(2)+y^(2)+z^(2) is

Find the values of x,y,z if the matrix A=[[0,2y,z],[x,y,-z],[x,-y,z]] satisfy the equation A^T A=I_3

Find the values of x, y, z if the matrix A=[[0, 2y, z],[ x, y,-z],[ x,-y, z]] satisfy the equation A^(prime)A=I .

If matrix A=[02 y z x y-zx-yz] satisfies AT = A-1, then find the value of x, y, z.

evaluate: |(a+x,y,z),(x,a+y,z),(x,y,a+z)|

|(0,xyz,x-z),(y-x,0,y-z),(z-x,z-y,0)| is equal to……………

Find the values of x ,\ \ y\ ,\ z if the matrix A=[0 2y z x y-z x-y z] satisfy the equation A^T\ A=I_3 .

An ordered triplet solution (x,y,z) with x,y,z int (0,1) and satisfying x^(2)+y^(2)+z^(2) + 2xyz=1 is