Home
Class 12
MATHS
If adj [(1,0,2),(-1,1,-2),(0,2,1)]=[(5,a...

If adj `[(1,0,2),(-1,1,-2),(0,2,1)]=[(5,a,-2),(1,1,0),(-2,-2,b)]` , then find a ,b

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( a \) and \( b \) in the equation: \[ \text{adj} \begin{pmatrix} 1 & 0 & 2 \\ -1 & 1 & -2 \\ 0 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 5 & a & -2 \\ 1 & 1 & 0 \\ -2 & -2 & b \end{pmatrix} \] ### Step 1: Calculate the adjoint of the matrix The adjoint of a matrix is the transpose of its cofactor matrix. We will calculate the cofactors for each element of the given matrix. #### Finding Cofactors: 1. **Cofactor \( A_{11} \)**: \[ A_{11} = \begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix} = (1)(1) - (-2)(2) = 1 + 4 = 5 \] 2. **Cofactor \( A_{12} \)**: \[ A_{12} = -\begin{vmatrix} -1 & -2 \\ 0 & 1 \end{vmatrix} = -((-1)(1) - (-2)(0)) = -(-1) = 1 \] 3. **Cofactor \( A_{13} \)**: \[ A_{13} = \begin{vmatrix} -1 & 1 \\ 0 & 2 \end{vmatrix} = (-1)(2) - (1)(0) = -2 \] 4. **Cofactor \( A_{21} \)**: \[ A_{21} = -\begin{vmatrix} 0 & 2 \\ 2 & 1 \end{vmatrix} = -((0)(1) - (2)(2)) = -(-4) = 4 \] 5. **Cofactor \( A_{22} \)**: \[ A_{22} = \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = (1)(1) - (2)(0) = 1 \] 6. **Cofactor \( A_{23} \)**: \[ A_{23} = -\begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix} = -((1)(2) - (0)(0)) = -2 \] 7. **Cofactor \( A_{31} \)**: \[ A_{31} = \begin{vmatrix} 0 & 2 \\ 1 & -2 \end{vmatrix} = (0)(-2) - (2)(1) = -2 \] 8. **Cofactor \( A_{32} \)**: \[ A_{32} = -\begin{vmatrix} 1 & 2 \\ -1 & -2 \end{vmatrix} = -((1)(-2) - (2)(-1)) = -(-2 + 2) = 0 \] 9. **Cofactor \( A_{33} \)**: \[ A_{33} = \begin{vmatrix} 1 & 0 \\ -1 & 1 \end{vmatrix} = (1)(1) - (0)(-1) = 1 \] ### Step 2: Form the cofactor matrix The cofactor matrix is: \[ \begin{pmatrix} 5 & 1 & -2 \\ 4 & 1 & -2 \\ -2 & 0 & 1 \end{pmatrix} \] ### Step 3: Transpose the cofactor matrix to get the adjoint The adjoint matrix is the transpose of the cofactor matrix: \[ \text{adj} = \begin{pmatrix} 5 & 4 & -2 \\ 1 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix} \] ### Step 4: Compare with the given adjoint matrix Now we compare this adjoint matrix with the given matrix: \[ \begin{pmatrix} 5 & a & -2 \\ 1 & 1 & 0 \\ -2 & -2 & b \end{pmatrix} \] From the comparison, we can see: 1. \( a = 4 \) 2. \( b = 1 \) ### Final Answer Thus, the values of \( a \) and \( b \) are: \[ a = 4, \quad b = 1 \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos

Similar Questions

Explore conceptually related problems

A={:[(1,2,1),(3,-1,2),(1,0,3)]:},B={:[(1,1,1),(-1,1,1),(2,-2,2)]:} then find matrix X such that 2A+X=2B.

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).

If A=[(1,0,0),(0,-1,0),(0,0,2)] and B=[(2,0,0),(0, 3,0),(0,0,-1)] , find A+B , 3A+4B .

If A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)] and B = [(1,2,-2), (-1,3,0), (0,-2,1)] find (AB)^(-1)

Let A+2B=[(1,2,0),(6,-3,3),(-5,3,1)] and 2A-B=[(2,-1,5),(2,-1,6),(0,1,2)], then find tr(A)-tr(B).

if 2A -3B =[{:(4,2),(-1,0),(3,-2):}]and 3A+B=[{:(1,0),(3,5),(-1,4):}] , then find the matrices A And B,

Let A=[{:(1,-2,-3),(0,1,0),(-4,1,0):}] Find adj A.

if A=[{:(3,-1,2),(0,5,-3),(1,-2,7):}]and B=[{:(1,0,0),(0,1,0),(0,0,1):}], find whether AB=BA or Not .

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0

If A=|(2,2,-4),(-4,2,-4),(2,-1,5)| and B=|(1,-1,0),(2,3,4),(0,1,2)| then find BA