Home
Class 12
MATHS
Evaluate : intsqrt(1+2cotx("cosec"x+cot...

Evaluate : `intsqrt(1+2cotx("cosec"x+cotx))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \sqrt{1 + 2 \cot x (\csc x + \cot x)} \, dx \), we will follow these steps: ### Step 1: Simplify the Expression Inside the Square Root We start with the expression inside the square root: \[ 1 + 2 \cot x (\csc x + \cot x) \] We know that: \[ \csc x = \frac{1}{\sin x} \quad \text{and} \quad \cot x = \frac{\cos x}{\sin x} \] Substituting these identities, we get: \[ 1 + 2 \cot x \left(\frac{1}{\sin x} + \frac{\cos x}{\sin x}\right) = 1 + 2 \cot x \cdot \frac{1 + \cos x}{\sin x} \] This simplifies to: \[ 1 + 2 \frac{\cos x}{\sin x} \cdot \frac{1 + \cos x}{\sin x} = 1 + 2 \frac{\cos x (1 + \cos x)}{\sin^2 x} \] ### Step 2: Use the Identity \( \csc^2 x - \cot^2 x = 1 \) We can express \( \sin^2 x \) in terms of \( \csc^2 x \) and \( \cot^2 x \): \[ \sin^2 x = \frac{1}{\csc^2 x} \] Thus: \[ 1 + 2 \cot x \cdot \frac{1 + \cos x}{\sin x} = 1 + 2 \cot x \cdot \csc x \] ### Step 3: Recognize a Perfect Square Notice that: \[ 1 + 2 \cot x \cdot \csc x = (\csc x + \cot x)^2 \] Thus, we can rewrite the integral: \[ \int \sqrt{(\csc x + \cot x)^2} \, dx = \int |\csc x + \cot x| \, dx \] Assuming \( \csc x + \cot x \) is positive in the interval of integration, we have: \[ \int (\csc x + \cot x) \, dx \] ### Step 4: Integrate The integral of \( \csc x + \cot x \) is: \[ \int (\csc x + \cot x) \, dx = -\ln |\csc x + \cot x| + C \] ### Final Answer Thus, the final result of the integral is: \[ -\ln |\csc x + \cot x| + C \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos

Similar Questions

Explore conceptually related problems

intsqrt(cotx) dx

Evaluate: intsqrt(("cosec"x-cotx)/("cosec"x+cotx).(secx)/sqrt(1+2secx) dx

Evaluate: intsqrt(x^2+x+1)\ dx

Evaluate: intsqrt(cosec^2x-2)dx

Evaluate: int1/(1-cotx)\ dx

Evaluate: int1/(1+cotx)\ dx

Evaluate: int1/(1-cotx)\ dx

Evaluate: inte^x\ (cotx-cos e c^2x)\ dx

Evaluate: int1/(cotx+cos e c\ x)\ dx

Evaluate: int(cotx)/(sinx)dx