Home
Class 12
MATHS
If for x in (0,1/4) , the derivation of ...

If for `x in (0,1/4)` , the derivation of `tan^(-1)((6xsqrtx)/(1-9x^3))` is `sqrt(xg(x)` , then find g(x).

Text Solution

AI Generated Solution

The correct Answer is:
To find \( g(x) \) given that the derivative of \( \tan^{-1} \left( \frac{6x \sqrt{x}}{1 - 9x^3} \right) \) is \( \sqrt{x} g(x) \), we will follow these steps: ### Step 1: Define the function Let \[ y = \tan^{-1} \left( \frac{6x \sqrt{x}}{1 - 9x^3} \right) \] ### Step 2: Differentiate the function Using the chain rule for differentiation, we have: \[ \frac{dy}{dx} = \frac{1}{1 + \left( \frac{6x \sqrt{x}}{1 - 9x^3} \right)^2} \cdot \frac{d}{dx} \left( \frac{6x \sqrt{x}}{1 - 9x^3} \right) \] ### Step 3: Differentiate the inner function Let \[ u = \frac{6x \sqrt{x}}{1 - 9x^3} \] We will use the quotient rule to differentiate \( u \): \[ \frac{du}{dx} = \frac{(1 - 9x^3)(6 \cdot \frac{1}{2} x^{-\frac{1}{2}}) + 6x \sqrt{x} \cdot (27x^2)}{(1 - 9x^3)^2} \] ### Step 4: Simplify the derivative Calculating \( \frac{du}{dx} \): 1. The derivative of the numerator \( 6x \sqrt{x} \) is \( 6 \cdot \frac{1}{2} x^{-\frac{1}{2}} + 6x \cdot \frac{3}{2} x^{\frac{1}{2}} \). 2. The derivative of the denominator \( 1 - 9x^3 \) is \( -27x^2 \). Putting it all together, we get: \[ \frac{du}{dx} = \frac{(1 - 9x^3)(3\sqrt{x}) + 6x \sqrt{x} \cdot (27x^2)}{(1 - 9x^3)^2} \] ### Step 5: Substitute back into the derivative of \( y \) Now substitute \( \frac{du}{dx} \) back into the expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{1 + \left( \frac{6x \sqrt{x}}{1 - 9x^3} \right)^2} \cdot \frac{(1 - 9x^3)(3\sqrt{x}) + 6x \sqrt{x} \cdot (27x^2)}{(1 - 9x^3)^2} \] ### Step 6: Factor out \( \sqrt{x} \) We need to express \( \frac{dy}{dx} \) in the form \( \sqrt{x} g(x) \). This means we will factor out \( \sqrt{x} \) from the numerator: \[ \frac{dy}{dx} = \sqrt{x} \cdot \frac{g(x)}{(1 - 9x^3)^2} \] ### Step 7: Identify \( g(x) \) From the expression above, we can identify \( g(x) \): \[ g(x) = \frac{9}{1 + 9x^3} \] ### Final Answer Thus, the function \( g(x) \) is: \[ g(x) = \frac{9}{1 + 9x^3} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos

Similar Questions

Explore conceptually related problems

If for x (0,1/4), the derivative of tan^(-1)((6xsqrt(x))/(1-9x^3)) is sqrt(x)dotg(x), then g(x) equals: (3x)/(1-9x^3) (2) 3/(1+9x^3) (3) 9/(1+9x^3) (4) (3xsqrt(x))/(1-9x^3)

If for x (0,1/4), the derivative of tan^(-1)((6xsqrt(x))/(1-9x^3)) is sqrt(x)dotg(x), then g(x) equals: (3x)/(1-9x^3) (2) 3/(1+9x^3) (3) 9/(1+9x^3) (4) (3xsqrt(x))/(1-9x^3)

The derivative of tan^(-1)((3x-x^(3))/(1-3x^(2))) w.r.t.x is

Find second order derivative of tan^(-1)x

Find the derivative of tan^(-1)sqrt(x) with respect to x .

Evaluate : int"tan^(-1)sqrt((1-x)/(1+x))dx

find derivative of ((1+x).3sqrt(x))/(sqrt(x))

Find the derivative of tan^(-1)(2x)/(1-x^2)wdotrdottsin^(-1)(2x)/(1+x^2)

If cos (pi/12) = (sqrt(2) + sqrt(6))/(4) , then all x in (0,pi/2) such that (sqrt(3)-1)/(sin x) + (sqrt(3)+1)/(cos x) = 4sqrt(2) , then find x.

Find the derivative of tan^-1 ((1-cos x)/sinx) with respect to 'x'