Home
Class 12
MATHS
Solve for x: sin^(-1)(1-x)-2sin^(-1)x=pi...

Solve for `x: sin^(-1)(1-x)-2sin^(-1)x=pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1}(1-x) - 2\sin^{-1}(x) = \frac{\pi}{2} \), we will follow these steps: ### Step 1: Rewrite the Equation We start with the given equation: \[ \sin^{-1}(1-x) - 2\sin^{-1}(x) = \frac{\pi}{2} \] ### Step 2: Isolate \( \sin^{-1}(1-x) \) Rearranging the equation gives: \[ \sin^{-1}(1-x) = \frac{\pi}{2} + 2\sin^{-1}(x) \] ### Step 3: Apply the Sine Function Taking the sine of both sides, we have: \[ 1 - x = \sin\left(\frac{\pi}{2} + 2\sin^{-1}(x)\right) \] Using the sine addition formula, we know that: \[ \sin\left(\frac{\pi}{2} + \theta\right) = \cos(\theta) \] Thus, we can rewrite the equation as: \[ 1 - x = \cos(2\sin^{-1}(x)) \] ### Step 4: Use the Cosine Double Angle Identity Using the identity \( \cos(2\theta) = 1 - 2\sin^2(\theta) \), we substitute \( \theta = \sin^{-1}(x) \): \[ \cos(2\sin^{-1}(x)) = 1 - 2x^2 \] So, we have: \[ 1 - x = 1 - 2x^2 \] ### Step 5: Simplify the Equation Cancelling \( 1 \) from both sides gives: \[ -x = -2x^2 \] Rearranging this leads to: \[ 2x^2 - x = 0 \] ### Step 6: Factor the Quadratic Equation Factoring out \( x \): \[ x(2x - 1) = 0 \] ### Step 7: Solve for \( x \) Setting each factor to zero gives: 1. \( x = 0 \) 2. \( 2x - 1 = 0 \) which gives \( x = \frac{1}{2} \) ### Step 8: Check the Solutions We need to check which of these solutions satisfies the original equation: - For \( x = 0 \): \[ \sin^{-1}(1-0) - 2\sin^{-1}(0) = \sin^{-1}(1) - 0 = \frac{\pi}{2} \] This satisfies the equation. - For \( x = \frac{1}{2} \): \[ \sin^{-1}(1-\frac{1}{2}) - 2\sin^{-1}(\frac{1}{2}) = \sin^{-1}(\frac{1}{2}) - 2\cdot\frac{\pi}{6} = \frac{\pi}{6} - \frac{\pi}{3} = -\frac{\pi}{6} \] This does not satisfy the equation. ### Final Solution Thus, the only solution is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos

Similar Questions

Explore conceptually related problems

Solve sin^(-1)(1-x)-2sin^(-1)x=pi/2

Solve sin^(-1)(1-x)-2sin ^(-1)x=pi/2

The number of solution (s) of the equation sin^(- 1)(1-x)-2sin^(- 1)x=pi/2 is/are

Solve for x: sin(2 tan^(-1)x)=1

Solve : sin^(-1)x + sin^(-1) 2x = (pi)/(3)

If sin ^(-1) (1-x)-2 sin ^(-1) x = (pi)/(2) then x = ?

If sin^(-1)(1-x)-2 sin^(-1)x=(pi)/(2) , then x is equal to

Solve sin^(-1)x+sin^(-1)2x=pi/3dot

Solve sin^(-1)x+sin^(-1)2x=pi/3dot

If sin^(- 1)(x)+sin^(- 1)(2x)=pi/3 then x=