Home
Class 12
MATHS
Evaluate : int(0)^(pi/2)(sin^2x-cos^2x)...

Evaluate : `int_(0)^(pi/2)(sin^2x-cos^2x)/(sin^3x+cos^3x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^2 x - \cos^2 x}{\sin^3 x + \cos^3 x} \, dx, \] we can use a property of definite integrals. This property states that \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] ### Step 1: Apply the property of definite integrals Here, we have \( a = 0 \) and \( b = \frac{\pi}{2} \). Thus, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^2\left(\frac{\pi}{2} - x\right) - \cos^2\left(\frac{\pi}{2} - x\right)}{\sin^3\left(\frac{\pi}{2} - x\right) + \cos^3\left(\frac{\pi}{2} - x\right)} \, dx. \] ### Step 2: Simplify the expressions Using the trigonometric identities \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \) and \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \), we get: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^2 x - \sin^2 x}{\cos^3 x + \sin^3 x} \, dx. \] ### Step 3: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^2 x - \cos^2 x}{\sin^3 x + \cos^3 x} \, dx \) (Equation 1) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^2 x - \sin^2 x}{\cos^3 x + \sin^3 x} \, dx \) (Equation 2) Adding these two equations: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{\sin^2 x - \cos^2 x + \cos^2 x - \sin^2 x}{\sin^3 x + \cos^3 x} \right) \, dx. \] ### Step 4: Simplify the numerator Notice that the numerator simplifies to zero: \[ \sin^2 x - \cos^2 x + \cos^2 x - \sin^2 x = 0. \] Thus, we have: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{0}{\sin^3 x + \cos^3 x} \, dx = 0. \] ### Step 5: Solve for \( I \) Since \( 2I = 0 \), we conclude that: \[ I = 0. \] ### Final Answer The value of the integral is \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^(pi//2)1/(4sin^2x+5cos^2x)dx

Using properties of definite integrals, evaluate: int_(0)^(pi//2) (sin x - cos x)/(1+sin x cos x) dx

Evaluate: int_0^(pi//2)(sin x)/(1+cos^2x)dx

Evaluate: int_0^(pi//2)(xsinx cos\ x)/(sin^4x+cos^4x)dx

Evaluate : int_0^(pi/2)(sin^2x)/(sin x+cos x)dx

int_0^(pi//4)(x^2(sin2x-cos2x))/((1+sin2x)cos^2x)dx

Evaluate the following integrals: int_0^(pi//4)(sin^2xcos^2x)/((sin^3x+cos^3x)^2)dx

evaluate: int_0^(pi/2) (sin^(3/2)x)/(sin^(3/2)x+cos^(3/2)x)dx

Evaluate: int_0^(pi//2)(cos^2x)/(cos^2x+4sin^2x)dx

Evaluate int_(0)^(pi//2) (cos^2 x)/(1+sin x cos x)dx .