Home
Class 12
MATHS
Evaluate : int(0)^(1)a^(2-3x)dx , as li...

Evaluate : `int_(0)^(1)a^(2-3x)dx` , as limit of sums .

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{0}^{1} a^{2-3x} \, dx \) as a limit of sums, we will follow these steps: ### Step 1: Define the integral as a limit of sums The integral can be expressed as: \[ \int_{0}^{1} a^{2-3x} \, dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} f(x_i) \Delta x \] where \( \Delta x = \frac{b-a}{n} = \frac{1-0}{n} = \frac{1}{n} \) and \( x_i = 0 + i \Delta x = \frac{i}{n} \). ### Step 2: Substitute into the function The function \( f(x) = a^{2-3x} \). Therefore, we can write: \[ f(x_i) = a^{2 - 3\left(\frac{i}{n}\right)} = a^{2 - \frac{3i}{n}} \] ### Step 3: Write the Riemann sum The Riemann sum becomes: \[ \sum_{i=0}^{n-1} f(x_i) \Delta x = \sum_{i=0}^{n-1} a^{2 - \frac{3i}{n}} \cdot \frac{1}{n} \] ### Step 4: Simplify the sum This can be rewritten as: \[ \frac{1}{n} \sum_{i=0}^{n-1} a^{2 - \frac{3i}{n}} = \frac{1}{n} \sum_{i=0}^{n-1} a^2 \cdot a^{-\frac{3i}{n}} = a^2 \cdot \frac{1}{n} \sum_{i=0}^{n-1} \left(a^{-\frac{3}{n}}\right)^i \] ### Step 5: Recognize the geometric series The sum \( \sum_{i=0}^{n-1} \left(a^{-\frac{3}{n}}\right)^i \) is a geometric series with first term 1 and common ratio \( a^{-\frac{3}{n}} \): \[ \sum_{i=0}^{n-1} \left(a^{-\frac{3}{n}}\right)^i = \frac{1 - \left(a^{-\frac{3}{n}}\right)^n}{1 - a^{-\frac{3}{n}}} \] ### Step 6: Evaluate the limit As \( n \to \infty \), \( a^{-\frac{3}{n}} \to 1 \) and \( \left(a^{-\frac{3}{n}}\right)^n \to a^{-3} \): \[ \frac{1 - a^{-3}}{1 - a^{-\frac{3}{n}}} \to \frac{1 - a^{-3}}{1 - 1} \text{ (which is indeterminate)} \] Using L'Hôpital's Rule or recognizing the limit gives: \[ \lim_{n \to \infty} \frac{1 - a^{-3}}{-\frac{3}{n} a^{-\frac{3}{n}}} = \frac{1 - a^{-3}}{-\frac{3}{n}} \to \frac{n(1 - a^{-3})}{-3} \to -\frac{1 - a^{-3}}{3} \] ### Final Step: Combine results Thus, the integral evaluates to: \[ \int_{0}^{1} a^{2-3x} \, dx = a^2 \cdot \left(-\frac{1 - a^{-3}}{3}\right) = \frac{a^2}{3} (1 - a^{-3}) = \frac{a^2 - a^{-1}}{3} \] ### Final Answer \[ \int_{0}^{1} a^{2-3x} \, dx = \frac{a^2 - a^{-1}}{3} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos

Similar Questions

Explore conceptually related problems

Evaluate :- int_(0)^(1)(3x^(2)+4)dx

Evaluate int_(0)^(1)x^(2)dx as the limit of a sum.

Evaluate : int_(-1)^(2)e^(x) dx as a limit of sum.

Evaluate : int(3x^2+1)dx

Evaluate int_(1)^(3)(x^(2)-2x)dx

Evaluate : int_(0)^(1) (1-x)^(3//2) dx

int_(0)^(3)(x^(2)+1)dx

1. int_(0)^(2)3x^(2)dx

Evaluate : int_(0)^(4) x(4-x)^(3//2)dx

Evaluate: int_(0)^1(dx)/(1+x^2)