Home
Class 12
MATHS
Evaluate: int(dx)/(sin^4x+sin^2xcos^2x+c...

Evaluate: `int(dx)/(sin^4x+sin^2xcos^2x+cos^4x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{dx}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}, \] we will follow these steps: ### Step 1: Rewrite the Denominator We start by rewriting the denominator: \[ \sin^4 x + \cos^4 x + \sin^2 x \cos^2 x. \] Using the identity \(a^2 + b^2 = (a + b)^2 - 2ab\), we can express \(\sin^4 x + \cos^4 x\) as: \[ (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x = 1 - 2\sin^2 x \cos^2 x. \] Thus, the denominator becomes: \[ 1 - 2\sin^2 x \cos^2 x + \sin^2 x \cos^2 x = 1 - \sin^2 x \cos^2 x. \] ### Step 2: Substitute with Trigonometric Identities We can use the identity \(\sin^2 x \cos^2 x = \frac{1}{4} \sin^2(2x)\): \[ 1 - \sin^2 x \cos^2 x = 1 - \frac{1}{4} \sin^2(2x). \] Thus, our integral becomes: \[ I = \int \frac{dx}{1 - \frac{1}{4} \sin^2(2x)}. \] ### Step 3: Simplify the Integral We can rewrite this integral using the formula for the integral of the form \(\int \frac{dx}{a - b \sin^2(kx)}\): \[ I = \int \frac{dx}{\frac{4}{4} - \frac{1}{4} \sin^2(2x)} = 4 \int \frac{dx}{4 - \sin^2(2x)}. \] ### Step 4: Use the Substitution Let \(u = 2x\), then \(du = 2dx\) or \(dx = \frac{du}{2}\): \[ I = 4 \cdot \frac{1}{2} \int \frac{du}{4 - \sin^2(u)} = 2 \int \frac{du}{4 - \sin^2(u)}. \] ### Step 5: Further Simplify the Integral Using the identity \(4 - \sin^2(u) = 4 \cos^2(u) + 3\): \[ I = 2 \int \frac{du}{4 - \sin^2(u)} = 2 \int \frac{du}{4 - \sin^2(u)}. \] ### Step 6: Use the Integral Formula The integral can be evaluated using the formula: \[ \int \frac{dx}{a^2 - b^2 \sin^2(x)} = \frac{1}{a} \tan^{-1}\left(\frac{b \sin(x)}{a}\right) + C. \] Here, \(a = 2\) and \(b = 1\): \[ I = 2 \cdot \frac{1}{2} \tan^{-1}\left(\frac{\sin(u)}{2}\right) + C = \tan^{-1}\left(\frac{\sin(2x)}{2}\right) + C. \] ### Final Step: Substitute Back Substituting back for \(u\): \[ I = \tan^{-1}\left(\frac{\sin(2x)}{2}\right) + C. \] ### Final Answer Thus, the evaluated integral is: \[ I = \tan^{-1}\left(\frac{\sin(2x)}{2}\right) + C. \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - B|10 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/(sin^4x+sin^2xcos^2x+cos^4x)\ dx

Evaluate : int(dx)/(sin^2xcos^2x)

int(sin^3x+sin^5x)/(cos^2x+cos^4x)dx

Evaluate: int1/(sin^4xcos^2x)dx

Evaluate: int1/(sin^2x cos^2x)\ dx

Evaluate: int1/(sin^2xcos^2x)\ dx

Evaluate: int1/(sin^4x+cos^4x)dx

Evaluate: int1/(sin^4x+cos^4x)dx

Evaluate: int1/(4sin^2x+4sinxcosx+5cos^2x)\ dx

Evaluate: int(sin2x)/(a^2sin^2x+b^2cos^2x)\ dx