Home
Class 12
MATHS
If veca,vecb and vecc are unit vectors s...

If `veca,vecb and vecc` are unit vectors such that `veca+vecb+vecc=vec0` then the value of `veca.vecb+vecb.vecc+vecc.veca` is a) 1 b) 0 c) 3 d) `-3/2`

A

1

B

0

C

3

D

`-3/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} \) given that \( \vec{a} + \vec{b} + \vec{c} = \vec{0} \) and that \( \vec{a}, \vec{b}, \vec{c} \) are unit vectors. ### Step-by-Step Solution: 1. **Understanding the Given Condition**: Since \( \vec{a} + \vec{b} + \vec{c} = \vec{0} \), we can rearrange this to express one vector in terms of the others: \[ \vec{c} = -(\vec{a} + \vec{b}) \] 2. **Taking the Dot Product**: We will take the dot product of both sides of the equation \( \vec{a} + \vec{b} + \vec{c} = \vec{0} \) with itself: \[ (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) = 0 \] 3. **Expanding the Dot Product**: Expanding the left-hand side using the distributive property of the dot product gives: \[ \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{c} + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0 \] 4. **Substituting the Magnitudes**: Since \( \vec{a}, \vec{b}, \vec{c} \) are unit vectors, we know that: \[ \vec{a} \cdot \vec{a} = 1, \quad \vec{b} \cdot \vec{b} = 1, \quad \vec{c} \cdot \vec{c} = 1 \] Therefore, substituting these values gives: \[ 1 + 1 + 1 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0 \] Simplifying this results in: \[ 3 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0 \] 5. **Isolating the Dot Product Sum**: Now, we can isolate the sum \( \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} \): \[ 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = -3 \] Dividing both sides by 2 gives: \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -\frac{3}{2} \] ### Final Answer: Thus, the value of \( \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} \) is \( -\frac{3}{2} \).
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos

Similar Questions

Explore conceptually related problems

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

If veca,vecb and vecc are unit vectors such that veca + vecb + vecc= 0 , then prove that veca.vecb+vecb.vecc+vecc.veca=-3/2

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca,vecb,vecc are three unit vectors such that veca+vecb+vecc=0, then veca.vecb+vecb.vecc+vecc.veca is equal to (A) -1 (B) 3 (C) 0 (D) -3/2

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

If veca,vecbandvecc are three vectors such that veca+vecb+vecc=0and|veca|=2,|vecb|=3and|vecc|=5 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If |veca|=3,|vecb|= 5 and |vecc|=4 and veca+ vecb + vecc =vec0 then the value of ( veca. vecb + vecb.vecc) is equal tio