Home
Class 12
MATHS
If |veca|=8,|vecb| = 3 and |veca xxvecb|...

If `|veca|=8,|vecb| = 3 and |veca xxvecb|=12 ` , find `veca.vecb`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the dot product of vectors \( \vec{a} \) and \( \vec{b} \) given their magnitudes and the magnitude of their cross product. ### Step-by-Step Solution: 1. **Given Information**: - Magnitude of \( \vec{a} \): \( |\vec{a}| = 8 \) - Magnitude of \( \vec{b} \): \( |\vec{b}| = 3 \) - Magnitude of the cross product \( |\vec{a} \times \vec{b}| = 12 \) 2. **Relationship Between Cross Product and Sine**: The magnitude of the cross product of two vectors can be expressed as: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta \] where \( \theta \) is the angle between the two vectors. 3. **Substituting Known Values**: Substitute the known values into the equation: \[ 12 = 8 \times 3 \times \sin \theta \] 4. **Calculating \( \sin \theta \)**: Simplifying the equation: \[ 12 = 24 \sin \theta \] Dividing both sides by 24: \[ \sin \theta = \frac{12}{24} = \frac{1}{2} \] 5. **Finding \( \theta \)**: The angle \( \theta \) can be found using the inverse sine function: \[ \theta = \sin^{-1}\left(\frac{1}{2}\right) \] This gives us: \[ \theta = 30^\circ \] 6. **Using the Dot Product Formula**: The dot product of two vectors can be expressed as: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] 7. **Calculating \( \cos \theta \)**: Since \( \theta = 30^\circ \): \[ \cos 30^\circ = \frac{\sqrt{3}}{2} \] 8. **Substituting Values into the Dot Product Formula**: Now substitute the values into the dot product formula: \[ \vec{a} \cdot \vec{b} = 8 \times 3 \times \cos 30^\circ \] \[ = 8 \times 3 \times \frac{\sqrt{3}}{2} \] \[ = 24 \times \frac{\sqrt{3}}{2} \] \[ = 12\sqrt{3} \] ### Final Answer: \[ \vec{a} \cdot \vec{b} = 12\sqrt{3} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos

Similar Questions

Explore conceptually related problems

If |veca|=sqrt(26), |vecb|=7 and |vecaxxvecb|=35, find veca.vecb

If |veca|=5 , |veca-vecb| = 8 and |veca +vecb|=10 then find |vecb|

If |veca|=2, |vecb|=5 and |vecaxxvecb|=8 then find the value of veca.vecb

If veca and vecb are two such that |veca|=5, |vecb|=4 and |veca.vecb|=10 , find the angle between veca and vecb and hence find |vecaxxvecb|

If |veca|=|vecb|=|veca+vecb|=1 then find the value of |veca-vecb|

If |veca| = 10, |vecb|=2 and veca.vecb=12 , then the value of |veca xx vecb| is:

If veca,vecb, vecc are three vectors such that |veca |= 5, |vecb| = 12 and | vecc|=13 and veca+vecb+vecc=0 then veca.vecb+vecb.vecc+vecc.veca is equal to

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

If veca, vecb are unit vectors such that |veca +vecb|=1 and |veca -vecb|=sqrt3 , then |3 veca+2vecb |=

IF |veca|=sqrt(3), |vecb|=2 and |veca-vecb|=3 find the angle between veca and vecb .