Home
Class 12
MATHS
Let veca=2hati+hatj-2hatk and vecb=hati+...

Let `veca=2hati+hatj-2hatk and vecb=hati+hatj`. Let `vecc` be a vector such that `|vecc-veca|=3,|(vecaxxvecb)xxvecc|` = 3 and the angle between `vecc and veca xx vecb ` is `30^@` Find `veca.vecc`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the given conditions and use vector operations. ### Given: - \(\vec{a} = 2\hat{i} + \hat{j} - 2\hat{k}\) - \(\vec{b} = \hat{i} + \hat{j}\) ### Step 1: Find \(\vec{a} \times \vec{b}\) Using the determinant method for the cross product: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -2 \\ 1 & 1 & 0 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} 1 & -2 \\ 1 & 0 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -2 \\ 1 & 0 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} 1 & -2 \\ 1 & 0 \end{vmatrix} = (1)(0) - (1)(-2) = 2\) 2. \(\begin{vmatrix} 2 & -2 \\ 1 & 0 \end{vmatrix} = (2)(0) - (1)(-2) = 2\) 3. \(\begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = (2)(1) - (1)(1) = 1\) Putting it all together: \[ \vec{a} \times \vec{b} = 2\hat{i} - 2\hat{j} + 1\hat{k} = 2\hat{i} - 2\hat{j} + \hat{k} \] ### Step 2: Find the magnitude of \(\vec{a} \times \vec{b}\) \[ |\vec{a} \times \vec{b}| = \sqrt{(2)^2 + (-2)^2 + (1)^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3 \] ### Step 3: Use the conditions given We know: 1. \(|\vec{c} - \vec{a}| = 3\) 2. \(|(\vec{a} \times \vec{b}) \times \vec{c}| = 3\) 3. The angle between \(\vec{c}\) and \(\vec{a} \times \vec{b}\) is \(30^\circ\). From the second condition, we can express it as: \[ |\vec{a} \times \vec{b}| \cdot |\vec{c}| \cdot \sin(30^\circ) = 3 \] Since \(|\vec{a} \times \vec{b}| = 3\) and \(\sin(30^\circ) = \frac{1}{2}\): \[ 3 \cdot |\vec{c}| \cdot \frac{1}{2} = 3 \implies |\vec{c}| = 2 \] ### Step 4: Use the first condition We have: \[ |\vec{c} - \vec{a}| = 3 \] Squaring both sides: \[ |\vec{c} - \vec{a}|^2 = 9 \implies (\vec{c} - \vec{a}) \cdot (\vec{c} - \vec{a}) = 9 \] Expanding this: \[ \vec{c} \cdot \vec{c} - 2\vec{a} \cdot \vec{c} + \vec{a} \cdot \vec{a} = 9 \] Substituting \(|\vec{c}|^2 = 4\) and \(|\vec{a}|^2 = 9\): \[ 4 - 2\vec{a} \cdot \vec{c} + 9 = 9 \] This simplifies to: \[ -2\vec{a} \cdot \vec{c} + 13 = 9 \implies -2\vec{a} \cdot \vec{c} = -4 \implies \vec{a} \cdot \vec{c} = 2 \] ### Final Answer \(\vec{a} \cdot \vec{c} = 2\)
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 4

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 3

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER - 7

    ICSE|Exercise Section - C |5 Videos

Similar Questions

Explore conceptually related problems

Let veca =2hati +hatj -2hatk and vecb = hati +hatj . " Let " vecc be vector such that |vecc -veca|=3, |(veca xx vecb) xx vecc|=3 and the angle between vecc and veca xx vecb " be " 30^(@) Then , veca . Vecc is equal to

Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vector such that veca .vecc = |vecc|, |vecc -veca| = 2sqrt2 and the angle between veca xx vecb and vec is 30^(@) , then |(veca xx vecb)|xx vecc| is equal to

If veca=hati+hatj+hatk and vecb=hatj-hatk find a vector vecc such that vecaxxvecc=vecb and veca.vecc=3 .

Let veca=hati-hatj,vecb=hati+hatj+hatk and vecc be a vector such that vecaxxvecc+vecb=vec0 and veca.vecc=4 , then |vecc|^(2) is equal to:

Let veca=hati-2hatj+hatkand vecb=hati-hatj+hatk be two vectors. If vecc is a vector such that vecbxxvecc=vecbxxveca and vecc*veca=0, theat vecc*vecb is equal to:

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

Let veca=2hati-hatj+3hatk, vecb=hati+hatj-4hatk and non - zero vector vecc are such that (veca xx vecb)xx vecc =veca xx(vecb xx vecc) , then vector vecc may be

Let vea, vecb and vecc be unit vectors such that veca.vecb=0 = veca.vecc . It the angle between vecb and vecc is pi/6 then find veca .

Let veca=2hati+2hatj+hatk and vecc is a vector such that |vecaxxvecc|^(2)+(veca.vecc)^(2)=144 then |vecc| is equal to

Let vecA, vecB and vecC be unit vectors such that vecA.vecB = vecA.vecC=0 and the angle between vecB and vecC " be" pi//3 . Then vecA = +- 2(vecB xx vecC) .