Home
Class 12
MATHS
For the matrix A=({:(-6, 0, 3), (-2, 1, ...

For the matrix `A=({:(-6, 0, 3), (-2, 1, 1), (-4, -5, 2):}),A*adjA=`

A

`A^(T)`

B

`I_(3)`

C

Orthogonal matrix

D

`O_(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \( A \times \text{adj}(A) \) for the given matrix \( A \), we will follow these steps: ### Step 1: Define the Matrix \( A \) The matrix \( A \) is given as: \[ A = \begin{pmatrix} -6 & 0 & 3 \\ -2 & 1 & 1 \\ -4 & -5 & 2 \end{pmatrix} \] ### Step 2: Calculate the Determinant of \( A \) To find \( \text{adj}(A) \), we first need to calculate the determinant of \( A \). The determinant of a \( 3 \times 3 \) matrix is calculated as follows: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): - \( a = -6, b = 0, c = 3 \) - \( d = -2, e = 1, f = 1 \) - \( g = -4, h = -5, i = 2 \) Calculating the determinant: \[ \text{det}(A) = -6 \cdot (1 \cdot 2 - 1 \cdot (-5)) + 0 + 3 \cdot (-2 \cdot (-5) - 1 \cdot (-4)) \] \[ = -6 \cdot (2 + 5) + 3 \cdot (10 + 4) \] \[ = -6 \cdot 7 + 3 \cdot 14 \] \[ = -42 + 42 = 0 \] ### Step 3: Find the Adjoint of \( A \) Since the determinant of \( A \) is 0, we can conclude that the adjoint of \( A \) will also be the zero matrix. However, let's compute the adjoint for completeness. 1. **Calculate the Minors:** - Minor of \( -6 \): \[ M_{11} = \begin{vmatrix} 1 & 1 \\ -5 & 2 \end{vmatrix} = (1)(2) - (1)(-5) = 2 + 5 = 7 \] - Minor of \( 0 \): \[ M_{12} = \begin{vmatrix} -2 & 1 \\ -4 & 2 \end{vmatrix} = (-2)(2) - (1)(-4) = -4 + 4 = 0 \] - Minor of \( 3 \): \[ M_{13} = \begin{vmatrix} -2 & 1 \\ -4 & -5 \end{vmatrix} = (-2)(-5) - (1)(-4) = 10 + 4 = 14 \] - Minor of \( -2 \): \[ M_{21} = \begin{vmatrix} 0 & 3 \\ -5 & 2 \end{vmatrix} = (0)(2) - (3)(-5) = 0 + 15 = 15 \] - Minor of \( 1 \): \[ M_{22} = \begin{vmatrix} -6 & 3 \\ -4 & 2 \end{vmatrix} = (-6)(2) - (3)(-4) = -12 + 12 = 0 \] - Minor of \( 1 \): \[ M_{23} = \begin{vmatrix} -6 & 0 \\ -4 & -5 \end{vmatrix} = (-6)(-5) - (0)(-4) = 30 \] - Minor of \( -4 \): \[ M_{31} = \begin{vmatrix} 0 & 3 \\ 1 & 1 \end{vmatrix} = (0)(1) - (3)(1) = -3 \] - Minor of \( -5 \): \[ M_{32} = \begin{vmatrix} -6 & 3 \\ -2 & 1 \end{vmatrix} = (-6)(1) - (3)(-2) = -6 + 6 = 0 \] - Minor of \( 2 \): \[ M_{33} = \begin{vmatrix} -6 & 0 \\ -2 & 1 \end{vmatrix} = (-6)(1) - (0)(-2) = -6 \] 2. **Form the Matrix of Minors:** \[ \text{Minors} = \begin{pmatrix} 7 & 0 & 14 \\ 15 & 0 & 30 \\ -3 & 0 & -6 \end{pmatrix} \] 3. **Calculate the Cofactor Matrix:** - Apply the checkerboard pattern of signs to the minors: \[ \text{Cofactors} = \begin{pmatrix} 7 & 0 & 14 \\ -15 & 0 & -30 \\ -3 & 0 & -6 \end{pmatrix} \] 4. **Transpose to Get the Adjoint:** \[ \text{adj}(A) = \begin{pmatrix} 7 & -15 & -3 \\ 0 & 0 & 0 \\ 14 & -30 & -6 \end{pmatrix} \] ### Step 4: Calculate \( A \times \text{adj}(A) \) Since \( \text{det}(A) = 0 \), we can conclude that: \[ A \times \text{adj}(A) = 0 \] Thus, \( A \times \text{adj}(A) \) results in the null matrix. ### Final Answer: \[ A \times \text{adj}(A) = \text{Null Matrix} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - B |10 Videos
  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • PROBABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |82 Videos

Similar Questions

Explore conceptually related problems

If the trace of the matrix A= [{:( x-1 ,0,2,5),( 3, x^(2) - 2 ,4,1),( -1,-2,x-3,1),(2,0,4,x^(2)-6) :}] is 0 then x is equal to

The rank of the matrix {:A=[(1,2,3),(4,5,6),(3,4,5)]:} is

Find A(a d j\ A) for the matrix A=[[1,-2 ,3],[ 0, 2,-1],[-4 ,5, 2]] .

The rank of the matrix {:[(1,2,3,0),(2,4,3,2),(3,2,1,3),(6,8,7,5)]:} , is

Expess the matrix A=[{:(2,0,-4),(-3,1,5),(4,-2,3):}] as a sum of symmetic and skew symmetric matrices.

If A=[(2, 0,-3),( 4, 3, 1),(-5, 7, 2)] is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is (a) [(2, 2,-4 ),(2, 3, 4),(-4, 4, 2)] (b) [(2, 4,-5),( 0, 3, 7),(-3, 1, 2)] (c) [(4, 4,-8),( 4, 6, 8),(-8, 8, 4)] (d) [(1, 0 ,0 ),(0 ,1 ,0),( 0, 0, 1)]

find the adjoint of the matrix A=[(1,2,3),(0,5,0),(2,4,3)]

Solve the matrix equation : 2x+{:[(-3,2,6),(5,-1,0),(3,-6,-2)]:}={:[(5,-8,-4),(1,3,10),(-5,8,0)]:} .

Write as a single matrix: ((-1,2,3))((-2,-1,5),(0,-1,4),(7,0,5))-2((4,-5,-7))