Home
Class 12
MATHS
Using determinant, find k if area of tri...

Using determinant, find k if area of triangle is 35 sq. units with vertices (2, -6), (5, 4) and (k, 4). a) 12 b) 2 c) -12,-2 d) 12,-2

A

12

B

-2

C

-12,-2

D

12,-2

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) such that the area of the triangle formed by the vertices \( (2, -6) \), \( (5, 4) \), and \( (k, 4) \) is 35 square units, we can use the formula for the area of a triangle given by its vertices using determinants. ### Step-by-step Solution: 1. **Area Formula**: The area \( A \) of a triangle with vertices \( (x_1, y_1) \), \( (x_2, y_2) \), and \( (x_3, y_3) \) is given by: \[ A = \frac{1}{2} \left| \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} \right| \] 2. **Substituting the vertices**: For our triangle, the vertices are \( (2, -6) \), \( (5, 4) \), and \( (k, 4) \). Thus, we can substitute these values into the area formula: \[ A = \frac{1}{2} \left| \begin{vmatrix} 2 & -6 & 1 \\ 5 & 4 & 1 \\ k & 4 & 1 \end{vmatrix} \right| \] 3. **Calculating the determinant**: We compute the determinant: \[ \begin{vmatrix} 2 & -6 & 1 \\ 5 & 4 & 1 \\ k & 4 & 1 \end{vmatrix} = 2 \begin{vmatrix} 4 & 1 \\ 4 & 1 \end{vmatrix} - (-6) \begin{vmatrix} 5 & 1 \\ k & 1 \end{vmatrix} + 1 \begin{vmatrix} 5 & 4 \\ k & 4 \end{vmatrix} \] The determinants of the 2x2 matrices are calculated as follows: - \( \begin{vmatrix} 4 & 1 \\ 4 & 1 \end{vmatrix} = 4 \cdot 1 - 4 \cdot 1 = 0 \) - \( \begin{vmatrix} 5 & 1 \\ k & 1 \end{vmatrix} = 5 \cdot 1 - k \cdot 1 = 5 - k \) - \( \begin{vmatrix} 5 & 4 \\ k & 4 \end{vmatrix} = 5 \cdot 4 - k \cdot 4 = 20 - 4k \) Plugging these back in: \[ = 2(0) + 6(5 - k) + (20 - 4k) = 30 - 6k + 20 - 4k = 50 - 10k \] 4. **Setting the area**: The area is given as 35 square units, thus: \[ \frac{1}{2} |50 - 10k| = 35 \] Multiplying both sides by 2 gives: \[ |50 - 10k| = 70 \] 5. **Solving the absolute value equation**: This leads to two cases: - Case 1: \( 50 - 10k = 70 \) \[ -10k = 70 - 50 \implies -10k = 20 \implies k = -2 \] - Case 2: \( 50 - 10k = -70 \) \[ -10k = -70 - 50 \implies -10k = -120 \implies k = 12 \] 6. **Final values of \( k \)**: Thus, the values of \( k \) are: \[ k = -2 \quad \text{and} \quad k = 12 \] ### Conclusion: The possible values of \( k \) are \( -2 \) and \( 12 \).
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - B |10 Videos
  • MODEL TEST PAPER-9

    ICSE|Exercise SECTION - C|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos
  • PROBABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |82 Videos

Similar Questions

Explore conceptually related problems

If area of triangle is 35 sq units with vertices (2, - 6), (5, 4) a n d (k , 4) . Then k is(A) 12 (B) -2 (C) 12 , 2 (D) 12 , -2

Using determinants, find the area of the triangle with vertices (-3, 5), (3, -6) and (7, 2).

Find the value of x if the area of triangle is 35 sq. units whose vertices are (x,4),(2,-6),(5,4).

Find the values of k if area of triangle is 4 sq. units and vertices are: (k,0),(0,2)(4,0)

Find the values of k if area of triangle is 9 sq. units and vertices are: (-2,0),(0,4)(0,k)

Using determinats, find the values of k, if the area of triangle with vertices (-2, 0), (0, 4) and (0, k) is 4 square units.

Using vectors, find the area of triangle with vertices A(2,3,5), B(3,5, 8) and C(2, 7, 8) .

Find the values of k if area of tringle is 4 sq. units and dvertices are : (i) (k,0), (4,0), (0,2)

Find the area of the triangle with vertices A\ (5,\ 4),\ \ B(-2,\ 4) and C\ (2,\ -6) .

Find values of k if area of triangle is 4 sq. units and vertices are (i) (k, 0), (4, 0), (0, 2) (ii) (–2, 0), (0, 4), (0, k)